LIE CENTRE-BY-METABELIAN GROUP ALGEBRAS IN EVEN CHARACTERISTIC, I

BY

RICHARD ROSSMANITH

Am Burggraben 4, 65760 Eschborn/k~rankfurt, Germany e-mail: richard.rossmanith@de.arthurandersen.com

ABSTRACT

We complete the classification of the Lie centre-by-metabelian group algebras over arbitrary fields by solving the case of characteristic 2.

Let G be a group (not necessarily finite), and let $\mathbb{F}G$ be its group algebra over some field **F** of characteristic $p \geq 0$. For subsets X, Y of **FG**, we denote by $[X, Y]$ the F-span of all elements $[x, y] := xy - yx$ with $x \in X, y \in Y$. The first and second derived Lie ideals of $\mathbb{F}G$ are defined as $(\mathbb{F}G)' := [\mathbb{F}G, \mathbb{F}G]$ and $(FG)'' := [FG)', (FG)']$, respectively. (Note that these are Lie ideals, but not necessarily associative ideals of FG.) We call FG Lie centre-by-metabelian, if $[FG, (FG)'] = 0$. (In this case $FG/Z(FG)$, regarded as a Lie algebra, is metabelian.)

Sharma and Srivastava showed in [12] that such group algebras are necessarily commutative if $p > 3$. By a general theorem of Passi, Passman and Sehgal [5], the same holds for $p = 0$. The case $p = 3$ is more interesting, since then $\mathbb{F}G$ is Lie centre-by-metabelian if and only if $|G'| \in \{1,3\}$ (cf. Külshammer-Sharma [4], Sahai-Srivastava [9]). In his survey article [1], A. Bovdi posed the problem for the remaining case $p = 2$. Its solution shall be presented here, as follows:

THEOREM 1: *Let G be a group, and let F be a field of characteristic 2. Then FG is Lie centre-by-metabelian, if and only if one of the following conditions is satisfied:*

- (i) $|G'|$ divides 4.
- (ii) G' is central and elementary abelian of order 8.

Received March 26, 1998

- (iii) *G* acts by element inversion on $G' \cong Z_2 \times Z_4$, and $C_G(G')' \subseteq \Phi(G')$.
- (iv) *G contains an abelian subgroup of index 2.*

Roughly speaking, this means that either G' has to be "small" (conditions (i), (ii), and (iii)), or G contains a "large" abelian subgroup (condition (iv)).

This paper first handles the (comparatively easy) "if"-direction in section 1. We then prove the converse direction for groups of class 2 in section 2, and for groups with commutator subgroups of exponent 2 in section 3 (by showing that they necessarily are of class 2 in our setting). In a second paper [8], devoted to groups that act more vigorously on their commutator subgroups, the proof of the theorem will be completed. (Both papers have their origin in the author's dissertation thesis [7].)

For elements a, b of the group G, we will use "left" commutators $(a, b) :=$ $aba^{-1}b^{-1}$, "left" conjugation $\mathcal{A} = aba^{-1}$, and "right normed triple commutators" $(a, b, c) := (a, (b, c))$. The lower central series of G is written as $G = \gamma_1(G) \trianglerighteq$ $\gamma_2(G) \geq \gamma_3(G) \geq \cdots$, and, if G is nilpotent, its class is denoted by cl(G). As usual, G' is the commutator subgroup of G, $\Phi(G)$ is the Frattini subgroup of G, and, if G is a p-group, then $\Omega(G)$ is the subgroup generated by all elements of order p. The letters A_n , D_{2n} , Q_8 , S_n , V_4 , Z_n refer to popular isomorphism types of groups.

Similarly as above, we set $[a, b, c] := [a, [b, c]]$ for elements a, b, c of $\mathbb{F}G$, and we write the lower central Lie series of $\mathbb{F}G$ as $\mathbb{F}G = \gamma_1(\mathbb{F}G) \trianglerighteq \gamma_2(\mathbb{F}G) \trianglerighteq \gamma_3(\mathbb{F}G) \trianglerighteq \cdots$ (note again that this is a descending chain of Lie ideals, and not ideals, of $\mathbb{F}G$). The sum over all elements of a finite subset X of $\mathbb{F}G$ is written as X^+ .

If the integer n divides the integer m, we write $n \mid m$.

Let us henceforth fix the characteristic of the base field $\mathbb F$ as $p=2$.

It is now a trivial observation that for any subgroup X of G , we have $X^+(1+x) = 0$ if and only if $x \in X$. Moreover, if $X = \langle x_1, \ldots, x_n \rangle$ has exponent $exp(X) = 2$, it is easily checked that

$$
(1+x_1)(1+x_2)\cdots(1+x_n) = \begin{cases} X^+ & \text{if } |X| = 2^n, \\ 0 & \text{if } |X| < 2^n. \end{cases}
$$

Another easy exercise is to show the following: If $G' \subseteq N \trianglelefteq G$ and $G/N =$ $\langle a_1N,\ldots,a_nN\rangle$, then $G' = \langle (a_i,a_j): 1 \leq i < j \leq n \rangle \langle a_1,N\rangle \cdots \langle a_n,N\rangle N'$. We will apply this often to $N := \mathcal{C}_G(G')$ in the case that G' is abelian.

We will also frequently use the fact that $\mathcal{C}_G(G')' \subseteq G' \cap \mathcal{Z}(G)$, which is a direct consequence of the Witt identity [3, Satz III.1.4].

1. The easy direction

Remark 1.1: For any group G we denote by $\omega(FG) := \mathbb{F}{1 + g: g \in G}$ the augmentation ideal of FG. If $H \triangleleft G$, then $\omega(\mathbb{F}H)$ FG = FG $\omega(\mathbb{F}H)$ is the kernel of the canonical epimorphism $\mathbb{F}G \to \mathbb{F}[G/H]$ (cf. [6, lemma 1.1.8]. In particular, $\mathbb{F}G/\omega(\mathbb{F}G')\mathbb{F}G \cong \mathbb{F}[G/G']$ is abelian, hence $(\mathbb{F}G)' \subset \omega(\mathbb{F}G')\mathbb{F}G$. Then

$$
(\mathbb{F}G)'' \subseteq [\omega(\mathbb{F}G') \mathbb{F}G, \omega(\mathbb{F}G') \mathbb{F}G] \subseteq (\omega(\mathbb{F}G') \mathbb{F}G)^2 = \omega(\mathbb{F}G')^2 \mathbb{F}G.
$$

Moreover, $(G')^+$ **FG** is a central ideal of **FG**, since $G' \triangleleft G$ implies $(G')^+ \in$ $\mathcal{Z}(FG)$, and for $q, h \in G$, we have

$$
[(G')^+g,h]=(G')^+[g,h]=(G')^+(1+(g,h))hg=0.
$$

LEMMA 1.2: Let G be a group with $|G'| = 2$. Then $(\mathbb{F}G)' \subseteq (G')^+ \mathbb{F}G$. In *particular, FG is Lie centre-by-metabelian.*

Proof: We write $G' = \langle x \rangle$. Then $(\mathbb{F}G)' \subseteq \omega(\mathbb{F}G') \mathbb{F}G = (1 + x) \mathbb{F}G = (G')^+ \mathbb{F}G$. **|**

LEMMA 1.3: Let G be a group with $|G'| = 4$. Then $(\mathbb{F}G)'' \subseteq (G')^+ \mathbb{F}G$. In *particular, FG is Lie centre-by-metabelian.*

Proof:

CASE 1: $G' = \langle x, y \rangle \cong V_4$. It is easily verified that $(FG)'' \subset \omega(FG')^2 FG =$ $(1+x)(1+y)$ $\mathbb{F}G = (G')^+$ $\mathbb{F}G$.

CASE 2: $G' = \langle x \rangle \cong Z_4$. We consider the canonical epimorphism $\mathbb{F}G \to$ $\mathbb{F}[G/\langle x^2 \rangle]$. By 1.2, $\gamma_3(\mathbb{F}[G/\langle x^2 \rangle]) = 0$, so $\gamma_3(\mathbb{F}G) \subseteq \omega(\mathbb{F}\langle x^2 \rangle) \mathbb{F}G = (1+x^2) \mathbb{F}G$. Check that $x^2 \in \mathcal{Z}(G)$, and $\omega(\mathbb{F}G')^3 \mathbb{F}G = (G')^+ \mathbb{F}G$. Then $(\mathbb{F}G)'' \subseteq \gamma_4(\mathbb{F}G) =$ $[FG, \gamma_3(FG)] \subseteq [FG, (1 + x^2)FG] = (1 + x^2)[FG, FG] = (1 + x)^2(FG)' \subseteq$ $\omega(\mathbb{F}G')^3 \cdot \mathbb{F}G \subseteq (G')^+ \mathbb{F}G.$

LEMMA 1.4: Let G be a group of class 2 with $G' \cong Z_2 \times Z_2 \times Z_2$. Then $(\mathbb{F}G)' \subseteq$ $(G')^+$ **FG.** In particular, **FG** is Lie centre-by-metabelian.

Proof: We have $exp(G') = 2$ and $G' \subseteq \mathcal{Z}(G)$. Then by Jennings [6, theorem 3.3.7], the second dimension subgroup of *G'* is trivial, so by [6, lemma 3.3.4], $\omega(\mathbb{F}G')^n \mathbb{F}G = \{(1 + x_1) \cdots (1 + x_n): x_1, \ldots, x_n \in G'\} \mathbb{F}G$ for all $n \in \mathbb{N}$. In particular, $\omega(\mathbb{F}G')^3 \mathbb{F}G = (G')^+ \mathbb{F}G$. But then

$$
[(\mathbb{F}G)',(\mathbb{F}G)'] \subseteq [\omega(\mathbb{F}G') \mathbb{F}G,\omega(\mathbb{F}G') \mathbb{F}G] = \omega(\mathbb{F}G')^2 [\mathbb{F}G, \mathbb{F}G] \subseteq \omega(\mathbb{F}G')^3 \mathbb{F}G \subseteq (G')^+ \mathbb{F}G.
$$

LEMMA 1.5: Let G be a group that acts by element inversion on $G' \cong Z_2 \times Z_4$, and suppose that $C_G(G')' \subseteq \Phi(G')$. Then FG is Lie centre-by-metabelian.

Proof: Write $G' = \langle x, y \rangle$ with $x^2 = 1 = y^4$, and set $C := C_G(G')$. Then $|G: C| = 2$, and $C' \subseteq \Phi(G') = \langle y^2 \rangle \subseteq \mathcal{Z}(G)$, and $^a x = x$, $^a y = y^3$ for all $a\in G\smallsetminus C$.

Obviously ($\mathbb{F}G'$)' is spanned by all elements of the form $[c, d] = cd + \frac{d}{cd}$, $[b, a] = ba + ^a(ba)$, or $[a, c] = ac + ^a(ac)$, with $c, d \in C$, $a, b \in G \setminus C$. Hence it is also spanned by all elements of the form $c + {}^d c$, $c + {}^a c$, or $a + {}^c a$, with $c, d \in C$, $a\in G\smallsetminus C$.

Consequently, $(FG)''$ is spanned by all elements of the form

(*)
$$
[c + {}^d c, g + {}^h g], [c + {}^a c, d + {}^e a d], [a + {}^c a, da + {}^e (da)], [c + {}^a c, da + {}^e (da)],
$$

with $c, d, e \in C$, $g, h \in G$, $a \in G \setminus C$ (note that if $a, a' \in G \setminus C$, then $a' = da$ for some $d \in C$). It suffices to show that all elements of this form are central in FG.

By Jennings [6, theorem 3.3.7], the series of dimension subgroups of G' is given as $\langle x, y \rangle \subseteq \langle y^2 \rangle \subseteq 1$. By [6, lemma 3.3.4], $\omega(\mathbb{F}G')^5 = 0$, and $\omega(\mathbb{F}G')^4 = \mathbb{F} \cdot (G')^+$. Then 1.1 implies that $\omega(\mathbb{F}G')^4 \mathbb{F}G \subseteq \mathcal{Z}(\mathbb{F}G)$.

Recall that $(FG)' \subseteq \omega(FG')FG$. Note also that $1 + C' \subseteq \omega(FG')^2$, since C' is contained in the second dimension subgroup of G'. Hence $(\mathbb{F}C)' \subseteq (1 + C') \mathbb{F}C \subseteq$ $\omega(\mathbb{F}G')^2 \mathbb{F}G$. We now check that

$$
[c + {}^d c, g + {}^h g] = [(1 + (d, c))c, (1 + (h, g))g]
$$

\n
$$
= (1 + (d, c))(1 + (h, g))[c, g] \in \omega(\mathbb{F}G')^4 \mathbb{F}G,
$$

\n
$$
[c + {}^a c, d + {}^{e a} d] = [(1 + (a, c))c, (1 + (ea, d))d]
$$

\n
$$
= (1 + (a, c))(1 + (ea, d))[c, d] \in \omega(\mathbb{F}G')^4 \mathbb{F}G,
$$

\n
$$
[c + {}^a c, da + {}^e (da)] = [(1 + (a, c))c, (1 + (e, da))da]
$$

\n
$$
= (1 + (e, da)) ((1 + (a, c))cda + (1 + (a, c)^{-1})dac)
$$

\n
$$
= (1 + (e, da))(1 + (a, c) + (1 + (a, c)^{-1})(a, c)(d, c))cda
$$

\n
$$
= (1 + (e, da))(1 + (a, c))(1 + (d, c))cda \in \omega(\mathbb{F}G')^4 \mathbb{F}G.
$$

Moreover,

$$
\tau := [a + {}^{c}a, da + {}^{e}(da)] = [(1 + (c, a))a, (1 + (e, da))da]
$$

= (1 + (c, a))(1 + (e, da)⁻¹)ada + (1 + (e, da))(1 + (c, a)⁻¹)da²
= (\sigma(a, d) + {}^{a} \sigma)da²,

where $\sigma := (1 + (c, a))(1 + (e, da)^{-1}) \in \omega(\mathbb{F}G')^2$.

It remains to show that τ is central in FG, or equivalently, that τ commutes with all $f \in C$, and with a. Recall that $(\mathbb{F}C)' \subseteq (1 + y^2) \mathbb{F}C$, and that $\mathcal{H}(1+y^2) = t(1+y^2)$ for all $t \in G'$. Then check $[f, \tau] = (\sigma(a, d) + \sigma)[f, da^2] \in$ $(\sigma(a, d) + \alpha) (\mathbb{F}C)' \subseteq \sigma((a, d) + 1)(1 + y^2) \mathbb{F}C \subseteq \omega(\mathbb{F}G')^5 \mathbb{F}G = 0.$ Finally, observe that ${}^a\tau = ({}^a\sigma \, {}^a\! (a,d) + {}^{a^2}\sigma) \, {}^a\! da^2 = ({}^a\sigma \, (a,d)^{-1} + \sigma) (a,d) da^2 = \tau$.

Remark 1.6: Suppose that G is a group that has an abelian subgroup A of index 2. Then [5, lemma 1.3] provides us with an embedding of $\mathbb{F}G$ into $\text{Mat}(2, \mathbb{F}A)$ (the algebra of all 2×2 -matrices over FA). It is an easy exercise to show that $\text{Mat}(2, R)$ is Lie centre-by-metabelian for any commutative ring R. Hence so is FG. This observation concludes the proof of the "if"-direction of Theorem 1.

2. Groups of nilpotence class 2

We are now going to verify Theorem 1 for groups G of class 2. We will freely use the well-known properties of such groups, such as $(ab, c) = (a, c)(b, c)$ for all $a, b, c \in G$, or $G' = \langle (g_i, g_j): 1 \le i < j \le n \rangle$ if $G = \langle g_1, \ldots, g_n \rangle$.

Remark 2.1: Let G be a group of class 2. Following A. Shalev $[11]$, we set

$$
S_x := \{a \in G : (a, b) = x \text{ for some } b \in G\}
$$

for $x \in G'$. If $(a, b) = x$, and $n, m, i, j \in \mathbb{Z}$, then $(a^n b^m, a^i b^j) = x^{nj - mi}$. If n, m are co-prime, then $a^n b^m \in S_x$ (similarly $b^m a^n \in S_x$). Consequently $S_x = S_x^{-1}$ = $S_{x^{-1}}$. (But note that the example $G = D_8$ shows that S_x need not be a subgroup of $G.$)

We will mainly use the following properties of S_x :

$$
(1+x) S_x \subseteq [S_x, S_x],
$$
 and $(1+x)^3 S_x \subseteq [FG]''.$

To see this, let $b \in S_x$, and choose an $a \in G$ with $x = (b, a^{-1}) = (a, b)$. Then $(1 + x)b = b + (a, b)b = b + aba^{-1} = [a^{-1}, ab] \in [S_x, S_x]$. Apply this to obtain $(FG)'' \supseteq [(1+x)S_x, (1+x)S_x] = (1+x)^2[S_x, S_x] \supseteq (1+x)^3S_x.$

LEMMA 2.2: *Let* G be a group of class 2 such that FG is *Lie centre-by-metabelian.* If G is generated by two elements, then $|G'| \mid 4$.

Proof: We write $G = \langle g, h \rangle$. Then $G' = \langle x \rangle$, where $x := (g, h)$. By 2.1, $(1 + x)^4 g \in (1 + x)^4 S_x \subseteq [(1 + x)^3 S_x, S_x] \subseteq [(\mathbb{F}G)'', \mathbb{F}G] = 0.$ Hence $0 =$ $(1 + x)^4 = 1 + x^4$, and $x^4 = 1$.

LEMMA 2.3: Let G be a group of class 2 such that FG is Lie centre-by-metabelian. If $|\langle x \rangle| \geq 4$ for some $x \in G'$, then $\{y \in G' : S_x \cap S_y \neq \emptyset\} \subseteq (S_x, G) \subseteq \langle x \rangle$.

Proof: It suffices to show the latter inclusion, since the former follows directly from the definition of S_y . W.l.o.g., suppose that $S_x \neq \emptyset$, and let $a \in S_x$, $g \in$ G. Then $\langle x \rangle^+(1 + (a,g)) = (1+x)^3[a,g](ga)^{-1} \in (1+x)^3[S_x, \mathbb{F}G](ga)^{-1}$ $[(1 + x)^3 S_x, \mathbb{F}G](ga)^{-1} \subseteq [(\mathbb{F}G)'', \mathbb{F}G](ga)^{-1} = 0$, and thus $(a, g) \in \langle x \rangle$.

LEMMA 2.4: Let G be a group of class 2. If $\mathbb{F}G$ is Lie centre-by-metabelian, *then G' is an elementary abelian 2-group, or* $G' \cong Z_4$ *.*

Proof: By considering the two-generator subgroups of G, we have $(g,h)^4 = 1$ for all $g, h \in G$ by 2.2. If $exp(G') = 2$ we are done.

Otherwise, there is a commutator of order 4 in G, say $x = (a, b)$. Let $y = (c, d)$ be an arbitrary commutator in G. By 2.3, we know that $(a, b), (a, d), (c, b) \in \langle x \rangle$, so there is a $k \in \{0, 1, 2, 3\}$ such that $(ac, bd) = (a, b)(a, d)(c, b)(c, d) = x^k y$. Now consider $(ac, b) = (a, b)(c, b) = x(c, b)$, and distinguish the following cases:

CASE 1: $(c, b) = 1$. Then $(ac, b) = x$, hence $ac \in S_x \cap S_{x+y}$, and $x^k y \in \langle x \rangle$ by 2.3.

CASE 2: $(c, b) = x$. Then $c \in S_x \cap S_y$ and $y \in \langle x \rangle$.

CASE 3: $(c, b) = x^2$. Then $(b, ac) = (x(c, b))^{-1} = x$, so $ac \in S_x \cap S_{x \nmid y}$ and $x^k y \in \langle x \rangle$.

CASE 4: $(c, b) = x^3$. Then $(b, c) = x$ and $c \in S_x \cap S_y$, hence $y \in \langle x \rangle$. In any case, we have $y \in \langle x \rangle$. Therefore $G' = \langle x \rangle \cong Z_4$.

Remark 2.5: The preceding lemma already comes very close to our goal in this section. All which remains to be faced are groups G with elementary abelian, central commutator subgroups G' of $(2-)$ rank greater than 3. We have to show that if $\mathbb{F}G$ is Lie centre-by-metabelian, then G contains an abelian subgroup A of index 2.

So suppose that G is a counterexample, and A is a maximal abelian subgroup of G (the existence of A is guaranteed by Zorn's lemma). To make the proofs of the following lemmata work, let us agree upon choosing A in such a way that $|A : \mathcal{Z}(G)| > 2$, if at all possible. In other words, we may assume that if $|A:Z(G)| \leq 2$, then $|B:Z(G)| \leq 2$ for all maximal abelian subgroups B of G.

Then $\mathbb{F}G$ is Lie centre-by-metabelian, and $|G: A| > 2$, and $|G'| \geq 16$, and $\exp(G') = 2$, and $G' \subseteq \mathcal{Z}(G) \subseteq A$ (in particular $A \subseteq G$), and $\mathcal{C}_G(A) = A$ (in particular $A > \mathcal{Z}(G)$). Let $g, h \in G$. Then $(g^2, h) = (g, h)^2 = 1$; i.e. all squares are central in G. Therefore $G/Z(G)$ and G/A are elementary abelian 2-groups. Hence $|G : A| \geq 4$.

We divide our examination of G into four cases (Lemmata $2.6-2.9$), depending on the index of (G, A) in G' . In each case, we will show that $\mathbb{F}G$ is not Lie centre-by-metabelian, in contradiction to our assumption.

LEMMA 2.6: Let G and A be as in 2.5, and suppose that $|G': (G, A)| \geq 8$. Then *FG is not Lie centre-by-metabelian.*

Proof: Suppose, for contradiction, that $\mathbb{F}G$ is Lie centre-by-metabelian.

For $\bar{G} := G/(G, A)$, we have $\exp(\bar{G}') = 2$, and $|\bar{G}'| \geq 8$.

Let us at first assume that there are \bar{s} , \bar{t} , \bar{u} , $\bar{v} \in \bar{G}$ with $|\langle \bar{s}$, \bar{t} , \bar{u} , $\bar{v}\rangle'| \geq 8$; w.l.o.g. $({\bar{s}, \bar{t}}) \neq 1$. If $({\bar{u}, \bar{v}}) \in \langle ({\bar{s}, \bar{t}}) \rangle$, then there are elements $\bar{p} \in {\bar{s}, \bar{t}}$, $\bar{q} \in {\bar{u}, \bar{v}}$ with $(\bar{p}, \bar{q}) \notin \langle (\bar{s}, \bar{t}) \rangle$, w.l.o.g. $\bar{p} = \bar{s}, \bar{q} = \bar{u}$. Then $\langle \bar{s}, \bar{t}, \bar{u}, \bar{v} \rangle = \langle \bar{s}, \bar{t}, \bar{u}, \bar{s} \bar{v} \rangle$ and $|\langle (\bar{s},\bar{t}),(\bar{u},\bar{s}\bar{v})\rangle| = 4$ since $(\bar{u},\bar{s}\bar{v}) = (\bar{u},s)(\bar{u},\bar{v}) \in (\bar{u},s)\langle (\bar{s},\bar{t})\rangle \neq \langle (\bar{s},\bar{t})\rangle$. So by replacing \bar{v} by $\bar{s}\bar{v}$ if necessary, we may assume that $|\langle (\bar{s}, t), (\bar{u}, \bar{v}) \rangle| = 4$. Since $|\langle \bar{s}, \bar{t}, \bar{u}, \bar{v} \rangle'| \geq 8$, there must be $\bar{p} \in {\bar{s}, \bar{t}}$, $\bar{q} \in {\bar{u}, \bar{v}}$ with $(\bar{p}, \bar{q}) \notin \langle (\bar{s}, \bar{t}), (\bar{u}, \bar{v}) \rangle$, w.l.o.g. $\bar{p} = \bar{s}, \bar{q} = \bar{u};$ i.e. $|\langle (\bar{s}, \bar{t}), (\bar{u}, \bar{v}), (\bar{s}, \bar{u}) \rangle| = 8$.

We move back into G by choosing preimages $s, t, u, v \in G$ of $\overline{s}, \overline{t}, \overline{u}, \overline{v}$, respectively. We set $x := (s,t), y := (u,v), z := (s,u),$ then $|\langle x,y,z \rangle| = 8$, and $\langle x,y,z \rangle \cap (G,A) = 1$. Moreover, *su* $\notin \mathcal{C}_G(A) = A$, for otherwise $z = (u,s) =$ $(s, su) \in (G, A)$. Consequently there is an $a \in A$ with $w := (su, a) \neq 1$. Because $w \in (G, A)$, we have $|\langle x, y, z, w \rangle| = 16$.

But then $(1+x)(1+y)(1+z)su = (1+x)(1+y)[s, u] = [(1+x)s, (1+y)u] \in$ $[(1 + x)S_x, (1 + y)S_y] \subseteq (\mathbb{F}G)'$, and $0 \neq (1 + x)(1 + y)(1 + z)(1 + w)$ asu = $(1+x)(1+y)(1+z)[su, a] = [(1+x)(1+y)(1+z)su, a] \in [(\mathbb{F}G)^{\prime\prime}, \mathbb{F}G] = 0.$ This means that our assumption is rubbish, and we may conclude:

(*) If $\bar{H} \leq \bar{G}$ is generated by four elements, then $|H'| \leq 4$.

We will reduce this conclusion to absurdum. For simplicity, and since we will not switch back to G anymore, we will omit the bars $\bar{\ }$ over the elements of G in the following.

Choose $s, t, u, v \in \bar{G}$ with $|\langle x, y \rangle| = 4$ for $x := (s, t), y := (u, v)$. By $(*),$ $\langle s, t, u, v \rangle' = \langle x, y \rangle$. In the case that $\langle s, t, u \rangle' = \langle x \rangle = \langle s, t, v \rangle'$ and $\langle s, u, v \rangle' =$ $\langle y \rangle = \langle t, u, v \rangle'$ we obtain $(\langle s, t \rangle, \langle u, v \rangle) \subseteq \langle x \rangle \cap \langle y \rangle = 1$, and it follows that $(su, t) = (s, t) = x$, $(su, v) = (u, v) = y$, hence $\langle su, t, v \rangle' = \langle x, y \rangle$. In any case, there are three elements $s, t, u \in \overline{G}$ such that $|\langle x, y \rangle| = 4$ with $x := (s, t)$, $y := (s, u).$

58 R. ROSSMANITH

Because of $|G'| \geq 8$, there are $g, h \in G$ with $z := (g,h) \notin \langle x,y \rangle$. Conclusion (*) then implies that

$$
\langle s, t, u, g \rangle' = \langle x, y \rangle = \langle s, t, u, h \rangle',
$$

\n
$$
\langle s, t, g, h \rangle' = \langle x, z \rangle,
$$

\n
$$
\langle s, u, g, h \rangle' = \langle y, z \rangle;
$$

\n
$$
\implies (\langle g, h \rangle, s) \subseteq \langle x, y \rangle \cap \langle x, z \rangle \cap \langle y, z \rangle = 1,
$$

\n
$$
(\langle g, h \rangle, u) \subseteq \langle x, y \rangle \cap \langle y, z \rangle = \langle y \rangle,
$$

\n
$$
(\langle g, h \rangle, t) \subseteq \langle x, y \rangle \cap \langle x, z \rangle = \langle x \rangle.
$$

If $(\langle g, h \rangle, u) = \langle y \rangle$ and $(\langle g, h \rangle, t) = \langle x \rangle$, we would have $\langle g, h, u, t \rangle' \supseteq \langle x, y, z \rangle$ in contradiction to (*). So assume w.l.o.g. that $(\langle g,h \rangle,t) = 1$. If $(g,u) = y$ and $(h, u) = y$, then $(gh, u) = y^2 = 1$. Moreover, $z = (g, h) = (h, g) = (gh, g)$ $(g, gh) = (h, gh) = (gh, h)$. Thus, by permuting $\{g, h, gh\}$ in a suitable way, we may assume that $(g, u) = 1$. But then $(gs, t) = (s, t) = x$, $(gs, u) = (s, u) = y$, $(g_s, h) = (g, h) = z$, and $\langle gs, t, u, h \rangle' \supseteq \langle x, y, z \rangle$ in contradiction to (*).

LEMMA 2.7: Let G and A be as in 2.5, and suppose that $|G': (G, A)| = 4$. Then *FG is not Lie centre-by-metabelian.*

Proof: Assume that $\mathbb{F}G$ is Lie centre-by-metabelian.

Set $\tilde{G} := G/(G, A)$, then $\exp(\tilde{G}') = 2$ and $|\tilde{G}'| = 4$. As in the proof of 2.6, there are $\bar{s}, \bar{t}, \bar{u} \in \bar{G}$ with $\bar{G}' = \langle \bar{s}, \bar{t}, \bar{u} \rangle' = \langle \bar{x}, \bar{y} \rangle$, where $\bar{x} := (\bar{s}, \bar{t}), \bar{y} := (\bar{s}, \bar{u})$. If $(\bar{t}, \bar{u}) = \bar{x}$ then $(\bar{t}, \bar{s}\bar{u}) = \bar{x}^2 = 1$ and $(\bar{s}, \bar{s}\bar{u}) = \bar{y}$; if $(\bar{t}, \bar{u}) = \bar{y}$ then $(\bar{s}\bar{t}, \bar{u}) = \bar{y}^2 = 1$ and $({\bar s}, {\bar s}t) = {\bar x}$; and if $({\bar t}, {\bar u}) = {\bar x} {\bar y}$ then $({\bar s}t, {\bar s}u) = 1$ and $({\bar s}, {\bar s}t) = {\bar x}$ and $({\bar s}, {\bar s}u) = {\bar y}$. Thus, by replacing \bar{t} (respectively \bar{u}) by $s\bar{t}$ (respectively $\bar{s}\bar{u}$) if necessary, we may assume that $(\tilde{t}, \tilde{u}) = 1$.

Let now $s, t, u, x, y \in G$ be suitable preimages of $\bar{s}, \bar{t}, \bar{u}, \bar{x}, \bar{y}$, respectively, such that $x = (s,t)$ and $y = (s,u)$. Certainly $(t,u) \in (G,A)$. If $(t,u) = 1$, let $a \in A \setminus C_A(t) \neq \emptyset$, then $(t, ua) \neq 1$. Thus, by replacing u by *ua* if necessary, we may assume that $w := (t, u) \in (G, A) \setminus \{1\}$. Then $(s, tu) = xy$ and

$$
\sigma := (1+x)(1+y)(1+w)ttu = (1+xy)(1+x)(1+w)ttu
$$

= (1+xy)(1+x)[tu, t] = [(1+xy)tu, (1+x)t]

$$
\in [(1+xy)S_{xy}, (1+x)S_x] \subseteq (\mathbb{F}G)^{n}.
$$

If $(u, A) \nsubseteq \langle w \rangle$, and $z := (u, b) \notin \langle w \rangle$ with $b \in A$, then $|\langle x, y, z, w \rangle| = 16$ and therefore

$$
0 = [b, \sigma] = t^2(1+x)(1+y)(1+w)[b, u] = t^2(1+x)(1+y)(1+w)(1+z)bu \neq 0,
$$

contradiction (recall that all squares are central in G, cf. 2.5). Hence $(u, A) \subseteq \langle w \rangle$. Similarly one shows that $(t, A) \subseteq \langle w \rangle$; this implies $(\langle t, u \rangle, A) = (t, A)(u, A) \subseteq$ $\langle w \rangle$.

Now $|G'| \ge 16$ implies $|(G, A)| \ge 4$, so there is an element $g \in G$ with $(g, A) \nsubseteq$ $\langle w \rangle$. The map $\sigma: A \to A$, $a \mapsto (g, a)$, is a group homomorphism with image (g, A) , hence $\sigma^{-1}(\langle w \rangle) < A$. Consequently $A \neq C_A(t) \cup \sigma^{-1}(\langle w \rangle)$, so there exists an $a \in A$ such that $(t, a) \neq 1$ (i.e. $w = (t, a) = (ta, a)$) and $z := (g, a) \in (G, A) \setminus \langle w \rangle$. Set $\tilde{x} := (s, ta) = x(s, a) \in x(G, A);$ then $|\langle \tilde{x}, y, z, w \rangle| = 16$. By 2.1,

$$
(1+y)(1+w)(1+\tilde{x})sta = (1+y)(1+w)[s, ta] = [(1+y)s, (1+w)ta] \in (FG)^{\prime\prime},
$$

hence $0 = [g, (1 + y)(1 + w)(1 + \tilde{x})sta] = (1 + y)(1 + w)(1 + \tilde{x})(1 + (sta, g))gsta.$ This implies $(st, g)z = (sta, g) \in \langle \tilde{x}, y, w \rangle$, i.e. $(st, g) \equiv z \pmod{\langle \tilde{x}, y, w \rangle}$. Let $\hat{x} := (as, ta) = w\tilde{x} \equiv \tilde{x} \pmod{\langle w \rangle}$, and $\tilde{y} := (as, u) = y(a, u) \equiv y \pmod{\langle w \rangle}$. We obtain

$$
(1+w)(1+y)(1+\tilde{x})ta^2s = (1+w)(1+\tilde{y})(1+\hat{x})ta \cdot as
$$

$$
= [(1+w)ta, (1+\tilde{y})as]
$$

 \in (FG)'', which leads to the contradiction $0 = [g, (1+w)(1+y)(1+\tilde{x})\tau a^2 s]$ $a^{2}(1+w)(1+y)(1+\tilde{x})(1+(st,g))gst = a^{2}(1+w)(1+y)(1+\tilde{x})(1+z)gst \neq 0.$ **]**

LEMMA 2.8: Let G and A be as in 2.5, and suppose that $|G': (G, A)| = 2$. Then *]FG is not Lie centre-by-metabelian.*

Proof: Assume that $\mathbb{F}G$ is Lie centre-by-metabelian. We have $|(G,A)| \geq 8$.

Suppose at first that there are $s, t \in G$ with $(s, t) \notin (G, A)$ and $|(\langle s, t \rangle, A)| \geq 8$. Then argue as follows:

$$
(*)_-
$$

 $\forall a, b \in A: (1 + (s, a))(1 + (t, b))(1 + (s, t))ts = [(1 + (t, b))t, (1 + (s, a))s] \in (\mathbb{F}G)^{n}$ $\Rightarrow \forall a, b, c \in A: 0 = [c, (1 + (s, a))(1 + (t, b))(1 + (s, t))ts]$ $\Rightarrow \forall a, b, c \in A$; $0 = (1 + (s, a))(1 + (t, b))(1 + (s, t))(1 + (ts, c))cts$ $\Rightarrow \forall a, b, c \in A: |\langle (s, a), (t, b), (ts, c), (s, t) \rangle| \leq 8$ $\Rightarrow \forall a, b, c \in A: |\langle (s, a), (t, b), (ts, c) \rangle| \leq 4.$

Since $(\langle s,t \rangle, A) = (s,A)(t,A)$, assume w.l.o.g. $|(s,A)| \geq 4$. Choose $a,b \in \mathbb{R}$ A such that $(t, b) \neq 1$ and $(s, a) \notin \langle (t, b) \rangle$. Then $(*)$ implies that $(ts, A) \subseteq$ $\langle (s, a), (t, b) \rangle$. Hence $(s, A) \nsubseteq \langle (s, a), (t, b) \rangle$ or $(t, A) \nsubseteq \langle (s, a), (t, b) \rangle$.

If $(s, A) \cap (t, A) = 1$, then $(\langle s, t \rangle, A) = (s, A)(t, A) = (s, A) \times (t, A)$. Let $c \in A$, then $(s, c)(t, c) = (st, c) \in \langle (s, a), (t, b) \rangle$, hence $(s, c) \in \langle (s, a) \rangle$ and $(t, c) \in \langle (t, b) \rangle$. But this implies that $(\langle s,t \rangle, A) = (s, A)(t, A) \subseteq \langle (s, a), (t, b) \rangle$, contradiction.

So we may assume that $(s, A) \cap (t, A) \neq 1$. Then there are $a, b, d \in A$ with $1 \neq (t,b) = (s,d)$ and $(s,a) \notin \langle (t,b) \rangle$, and $(*)$ implies again that $(ts,A) \subseteq$ $\langle (s, a), (t, b) \rangle = \langle (s, a), (s, d) \rangle \subseteq (s, A)$. It follows that $(\langle s, t \rangle, A) = (s, A)(st, A) =$ (s, A) . Conclusion (*) then implies that $|\langle (s, a), (t, b), (s, c) \rangle| \leq 4$ for all $a, b, c \in$ A, i.e. (t, A) is contained in all subgroups of (s, A) of order 4. The intersection of all those subgroups is trivial, because $|(s, A)| \geq 8$, but (t, A) cannot be trivial, because $t \notin A = C_G(A)$.

This shows that $|((s,t),A)| \leq 4$ for all $s,t \in G$ with $(s,t) \notin (G,A)$.

Assume now that there are $s,t \in G$ with $z := (s,t) \notin (G,A)$ and $|(\langle s,t \rangle, A)| =$ 4. Then there is an element $g \in G$ with $(g, A) \nsubseteq (\langle s, t \rangle, A)$.

If $|(s, A)| = 4$, then $(\langle s, t \rangle, A) = (s, A)$. This implies $|(\langle s, g \rangle, A)| \geq 8$ and $|((s, tg), A)| \geq 8$, hence $(s, g) \in (G, A)$ and $(s, tg) \in (G, A)$ by the above. But then also $(s, t) = (s, tg)(s, g) \in (G, A)$, contradiction.

Consequently $|(s, A)| = 2$, and similarly $|(t, A)| = 2$, say $(s, A) = \langle x \rangle$ and $(x, A) = \langle y \rangle$. Let $a \in A$. Then $|\langle x, y, z \rangle| = 8$, $s \in S_x$, $ta \in S_y$, $(s, ta) = z(s, a) \equiv z$ $(mod \langle x \rangle)$ and

$$
(1+x)(1+y)(1+z)tas = (1+x)(1+y)(1+(s, ta))tas = [(1+y)ta, (1+x)s] \in (FG)^{n}.
$$

It follows that

$$
0 = [g, (1+x)(1+y)(1+z) \text{tas}] = (1+x)(1+y)(1+z)(1+(g,a)(g,st)) \text{tas } g,
$$

i.e. $(g, st) \in (g, a) \langle x, y, z \rangle$ for all $a \in A$. But this is ridiculous since $\bigcap_{a \in A} (g, a) \langle x, y, z \rangle = \emptyset$ because of $(g, A) \nsubseteq \langle x, y, z \rangle$.

This shows that $|(\langle s,t \rangle, A)| = 2$ for all $s,t \in G$ with $(s,t) \notin (G,A)$. On the other hand, there surely are $s,t \in G$ with $(s,t) \notin (G,A)$, since $G' \neq (G,A)$. Then $(s, A) = (\langle s,t \rangle, A) = (t, A)$. Let $g \in G$ with $(g, A) \nsubseteq (\langle s,t \rangle, A)$, then $|((g,t),A)| \geq 4$ and $|((gs,t),A)| \geq 4$. This implies $(g,t) \in (G,A)$ and $(gs,t) \in$ (G, A) , which leads to the contradiction $(s,t) = (gs,t)(g,t) \in (G, A)$.

LEMMA 2.9: Let G and A be as in 2.5, and suppose that $|G': (G, A)| = 1$. Then *FG is not Lie centre-by-metabelian.*

Proof: Assume that $\mathbb{F}G$ is Lie centre-by-metabelian. Since $G' = (G, A)$, we have $|(G, A)| \ge 16$.

Let us at first make the additional assumption that $|(s, A)| = 2$ for all $s \in G \setminus A$.

We claim that in this case $(r, s) \in (r, A)(s, A)$ for all $r, s \in G \setminus A$ with $(r, A) \neq$ (s, A) . If not, then there are $r, s \in G \setminus A$ such that $|\langle x, y, z \rangle| = 8$, where $(r, A) = \langle x \rangle$, $(s, A) = \langle y \rangle$, and $z := (r, s)$. Since $A \neq C_A(r) \cup C_A(s)$, there is an $a \in A$ with $x = (r, a), y = (s, a)$. By hypothesis, $|(G, A)| \ge 16$, hence there are $t \in G, c \in A$ with $w := (t, c) \notin \langle x, y, z \rangle$. For any $d \in A$, we then have

$$
\sigma := [[s, dr], [s, a]] = [(1 + (s, dr))ds, (1 + (s, a))as]
$$

= (1 + (s, dr))(1 + (s, a))[drs, as]
= (1 + (s, dr))(1 + (s, a))(1 + (drs, as))asdrs
= (1 + (s, d)(s, r))(1 + y)(1 + (ds, as)(r, a)(r, s))asdrs
= (1 + (s, d)(1 + y)(1 + xz)asdrs = (1 + z)(1 + y)(1 + x)asdrs,

and

$$
0 = [t, \sigma] = (1 + z)(1 + y)(1 + x)(1 + (t, a s d r s))a s d r s t
$$

= (1 + z)(1 + y)(1 + x)(1 + (t, ar)(t, d))a s d r s t.

This implies that $(t, ar) \in (t, d) \langle x, y, z \rangle$ for all $d \in A$; in particular we have $(t, ar) \in (t, c) \langle x, y, z \rangle \cap (t, 1) \langle x, y, z \rangle = w \langle x, y, z \rangle \cap \langle x, y, z \rangle = \emptyset$. This contradiction proves our claim.

We claim next that there are $r, s \in G \setminus A$ with $C_A(r) \neq C_A(s)$. Otherwise we have $C_A(r) = C_A(s)$ for all $r, s \in G \setminus A$, hence $C_A(s) = \mathcal{Z}(G)$ for all $s \in G \setminus A$. Let $s \in G \setminus A$, and consider the homomorphism $A \to A$, $a \mapsto (s, a)$. Its image is (s, A) and its kernel $C_A(s) = \mathcal{Z}(G)$; in particular $A/\mathcal{Z}(G) \cong (s, A)$, and therefore $|A : \mathcal{Z}(G)| = 2$. By the choice of A, this implies $|B : \mathcal{Z}(G)| \leq 2$ for all maximal abelian subgroups B of G (cf. 2.5). Let $r \in G \setminus A$ with $(r, A) \neq (s, A)$, then $(r, s) \in (r, A)(s, A)$ by the previous claim. Since

$$
(r, A)(s, A) = (r, A) \cup (s, A) \cup (rs, A)
$$

(for order reasons) and $(r,s) = (s,r) = (s, rs) = (rs, s) = (r, rs) = (rs, r)$, we may permute $\{r, s, rs\}$ in a suitable way and assume that $(r, s) \in (r, A)$, i.e. $(r, s) = (r, a)$ for some $a \in A$. Then $(r, sa) = 1$, so we may replace s by *sa* and assume $(r,s) = 1$. Certainly $(r,A) \neq (s,A) \implies r\mathcal{Z}(G) \neq s\mathcal{Z}(G) \implies$ $|B : \mathcal{Z}(G)| > 2$, where $B := \langle \mathcal{Z}(G), r, s \rangle$; but then B is abelian in contradiction to a previous statement.

Now let $r, s \in G \setminus A$ with $C_A(r) \neq C_A(s)$. If $(r, A) = (s, A)$, there is an element $t \in G \setminus A$ with $(r, A) \neq (t, A)$. If $C_A(r) = C_A(t)$, then $C_A(r) \neq C_A(st)$

and $(r, A) \neq (st, A)$. In any case, there are $r, s \in G \setminus A$ with $(r, A) \neq (s, A)$ and $C_A(r) \neq C_A(s)$, w.l.o.g. $C_A(r) \nsubseteq C_A(s)$. We choose such r, s and write $(r, A) = \langle x \rangle$, $(s, A) = \langle y \rangle$.

Since $|(G, A)| \geq 16$, we may choose $t, u \in G \setminus A$ such that $|\langle x, y, z, w \rangle| = 16$ with $(t, A) = \langle z \rangle$ and $(u, A) = \langle w \rangle$. By the first claim, $(su, t) \in (su, A)(t, A)$ $\langle yw, z \rangle$, so there is an $e \in A$ such that $(su, te) = (su, t)(su, e) \in \langle z \rangle$. We replace t by *te* and henceforth assume that $(su, t) \in \langle z \rangle$. Let now $a, b \in A$ such that $(t, b) = z$ and $(su, ba) = wy$. For $c, d \in A$, we then have

$$
\sigma := [[cs, du], [at, b]] = [(1 + (cs, du))ducs, (1 + (at, b))bat]
$$

= (1 + (cs, du))(1 + (at, b))[ducs, bat]
= (1 + (cs, du))(1 + z)(1 + (ducs, ba)) (ducs, t)) badducs
= (1 + (cs, du))(1 + z)(1 + wy) badducs,

and $0 = [r, \sigma] (batducsr)^{-1} = (1 + (cs, du))(1 + z)(1 + wy)(1 + (r, batducs)) =$ $(1 + (u, c)(s, d)(s, u))(1 + z)(1 + wy)(1 + (r, batsu)(r, dc)).$ This implies $|E_{c,d}| <$ 16 with $E_{c,d} := \langle z, wy, (u,c)(s,d)(s,u), (r,batsu)(r,dc) \rangle$ for all $c,d \in A$. Now $(s, u) \in \langle w, y \rangle$, so we have $(s, u) \equiv 1$ or $(s, u) \equiv w \pmod{\langle wy, z \rangle}$. Furthermore, $(r, batsu) = (r, ab)(r, stu) \in \langle x, wyz \rangle$, hence $(r, batsu) \equiv 1$ or $(r, batsu) \equiv x$ (mod $\langle wy, z \rangle$). Consider the following cases (all congruences modulo $\langle wy, z \rangle$):

CASE 1: $(s, u) \equiv 1$ *and* $(r, batsu) \equiv 1$. Set $c := 1$ *and choose*

$$
d\in A\smallsetminus(\mathcal{C}_A(s)\cup\mathcal{C}_A(r))\neq\emptyset,
$$

then $E_{c,d} = \langle z, wy, y, x \rangle$.

CASE 2: $(s, u) \equiv 1$ *and* $(r, batsu) \equiv x$. Set $c := 1$ *and choose*

$$
d\in \mathcal{C}_A(r)\setminus \mathcal{C}_A(s)\neq \emptyset,
$$

then $E_{c,d} = \langle z, wy, y, x \rangle$.

CASE 3: $(s, u) \equiv w$ and $(r, batsu) \equiv 1$. Choose $c \in A \setminus (C_A(u) \cup C_A(r)) \neq \emptyset$ and $d \in \mathcal{C}_A(r) \setminus \mathcal{C}_A(s) \neq \emptyset$, then $E_{c,d} = \langle z, wy, w^2y, x \rangle$.

CASE 4: $(s, u) \equiv w$ and $(r, batsu) \equiv x$. Set $c = d = 1$, then $E_{c,d} = \langle z, wy, w, x \rangle$.

In any case we obtain $E_{c,d} = \langle x, y, z, w \rangle$, which leads to the contradiction $|E_{c,d}| = 16$. This shows that our additional assumption at the beginning of the proof was wrong, so there is an element $s \in G$ such that $|(s, A)| \geq 4$:

Assume next that there is an element $s \in G$ such that even $|(s, A)| \geq 16$. Since $|G : A| \geq 4$, there is a residue class *tA* (with $t \in G$) distinct from both *sA* and A.

If there is an element $c \in A$ with $1 \neq (s, c) \neq (t, c) \neq 1$, there are $a, b \in A$ with $|\{(s, a), (s, b), (s, c), (t, c)\}\rangle| = 16$ (because of $|(s, A)| \ge 16$). Then $(s, c) = (s, sc)$, and $(se, b) = (s, b)$, and 2.1 imply that

$$
\sigma := (1 + (s, a))(1 + (s, b))(1 + (s, c))s \cdot sc = [(1 + (s, a))s, (1 + (sc, b))sc] \in (\mathbb{F}G)^{\prime\prime},
$$

and $[\mathbb{F}G, (\mathbb{F}G)''] \ni [t, \sigma] = s^2(1+(s, a))(1+(s, b))(1+(s, c))[t, c] = s^2(1+(s, a))(1+(s, c))$ (s, b) $(1 + (s, c))$ $(1 + (t, c))$ $ct \neq 0$, contradiction.

Therefore, we may assume that

(*)
$$
\forall a \in A, t \in G \setminus (A \cup sA): (s, a) \neq 1 \neq (t, a) \Longrightarrow (s, a) = (t, a)
$$

Let $t \in G \setminus (A \cup sA)$, $a \in A \setminus (C_A(s) \cup C_A(t))$, then $1 \neq (s,a) = (t,a)$ by (*). Set $B_a := \{b \in A: (s,b) \notin \langle (s,a) \rangle\} \neq \emptyset$.

If there is a $b \in B_a$ with $(t, b) = 1$, then $st \in G \setminus (A \cup sA)$ and $(st, ab) =$ $(s,a)(t,a)(s,b) = (s,a)^2(s,b) \neq 1$ and $(s,ab) = (s,a)(s,b) \neq 1$, but $(s,ab) \neq 1$ $(s, ab)(t, a) = (s, ab)(t, ab) = (st, ab)$ in contradiction to (*). Consequently $(t, b) \neq 1$, i.e. $(t, b) = (s, b)$, for all $b \in B_a$.

Let now $\tilde{a} \in A$ with $1 \neq (s, \tilde{a}) \neq (s, a)$, then $a \in B_{\tilde{a}}$ and $\tilde{a} \in B_{a}$; in fact $A \setminus C_A(s) = B_a \cup B_{\tilde{a}}$. Much as above it follows that $(t, b) = (s, b)$ for all $b \in B_{\tilde{a}}$. Together we obtain $(t, b) = (s, b)$ for all $b \in A \setminus C_A(s)$. But then also $|(t, A)| \geq 16$, so by symmetry, we find that $(t, b) = (s, b)$ for all $b \in A \setminus C_A(t)$. It follows that $(t, b) = (s, b)$ for all $b \in A$, hence $(st^{-1}, b) = 1$ for all $b \in A$, so $st^{-1} \in C_G(A) = A$, in contradiction to $tA \neq sA$.

 $|(s, A)| \geq 4$. Using similar methods as earlier in the proof, we obtain an element $t \in G$ with $(t, A) \nsubseteq (s, A) < (G, A) = G'$, an element $b \in A$ with $y := (s, b) \neq 1$, $z := (t, b) \notin (s, A)$, and an element $a \in A$ with $x := (s, a) \notin (y)$; in short: $|\langle x,y,z\rangle|=8.$ This shows that $|(s, A)| \leq 8$ for all $s \in G$, and there does exist an $s \in G$ with

Let $d \in A$ be arbitrary, and consider

$$
\sigma := (1+x)(1+z)(1+y)ds \cdot b = [(1+x)ds, (1+z)b] \in [(1+x)S_x, (1+z)S_z] \subseteq (\mathbb{F}G)^n.
$$

If $r \in G$ with $(r, A) \nsubseteq \langle x, y, z \rangle$, then

$$
0 = [r, \sigma] = (1+x)(1+z)(1+y)(1+(r, dsb))dsbr
$$

$$
= (1+x)(1+z)(1+y)(1+(r, d)(r, sb))dsbr.
$$

This implies $(r, sb) \in (r, d) \langle x, y, z \rangle$ for all $d \in A$, but $\bigcap_{d \in A} (r, d) \langle x, y, z \rangle = \emptyset$, contradiction.

3. Elementary abelian commutator subgroups

This section deals with groups G such that $exp(G') = 2$. We will show that FG Lie centre-by-metabelian implies $G' \subseteq \mathcal{Z}(G)$, so we may apply the results of section 2.

LEMMA 3.1: *Let E be a normal subgroup of exponent 2 of the group G, and* suppose that $\mathbb{F}G$ is Lie centre-by-metabelian. If we set $C := \mathcal{C}_G(E)$, then:

- (i) The element orders in G/C are 1, 2, 3, or 4.
- (ii) If $aC \in G/C$ has order 3, then $E = (a, E) \times C_E(a)$, and $|(a, E)| = 4$.
- (iii) There is no subgroup of order 9 in G/C .
- (iv) If G/C is abelian, then $|G/C|=3$, or $\exp(G/C)$ | 4.

Proof: (i) Let $x \in E$, $a \in G$. Observe that $(x, a) = (a, x) = \alpha x$. Then

$$
\sigma := [x + {}^{a}x, a + {}^{x}a] = [(1 + {}^{a}xx)x, (1 + {}^{a}xx)a]
$$

= $(1 + {}^{a}xx)^{2}xa + (1 + {}^{a}xx)(1 + {}^{a}x { }^{a}x)^{a}xa$
= $(1 + {}^{a}xx)(1 + {}^{a}x { }^{a}x)^{a}xa.$

Since $(1 + \frac{a^2 x^2}{x}) (\frac{a_x}{x} + \frac{a^2 x}{x}) = 0$, we furthermore obtain

$$
0 = [a, \sigma]a^{-2} = (1 + {a^2x a x})(1 + {a^3x a^2 x}){a^2x + (1 + axx)(1 + {a^2x a x})a x}
$$

= (1 + {a^2x a x})(a^2x + {a^3x + axx + x}) = (1 + {a^2x a x})(x + {a^3x})
= (1 + {a^2x a x})(1 + {a^3x x})x.

Expanding the parenthesis yields $1 \in \{a^2x^a x, a^3x^a, a^3x^a^2x^a x\}$. Now if $1 =$ $a^x x^a x$, then $x = x^2$, if $1 = a^3 x$, then $x = a^3 x$, and if $1 = a^3 x^a x^a x$, then $a^{3}x = a^{2}x^{2}x^{2}x$, i.e. $a^{3}x = a^{3}x^{2}x^{2}x = a^{2}x^{2}x^{2}x^{2}x = x$.

(ii) We consider E as an $\mathbb{F}_2[\langle aC \rangle]$ -module. By Maschke [3, Satz I.17.7], E is semisimple. There are two nonisomorphic simple $\mathbb{F}_2[\langle aC \rangle]$ -modules: the trivial one, and a module of dimension 2, on which *(aC}* acts by cyclic permutation of the three nontrivial elements.

ASSUMPTION: There are two distinct nontrivial simple submodules V, W contained in E. Then dim $V = \dim W = 2$, and we may write $V = \langle x, y \rangle$, $W = \langle z, w \rangle$

such that ${}^a x = y$, ${}^a y = xy$, ${}^a z = w$, ${}^a w = wz$. Then

$$
[[x, a], [z, a]] = [(1 + (a, x))xa, (1 + (a, z))za] = [(1 + xy)xa, (1 + wz)za]
$$

= (1 + xy)(1 + z)xwa² + (1 + wz)(1 + x)zya²
= (xw + xwz + wyz + xyz + xyz + xyw) a²,

and

$$
0 = [x, \sigma a^2]a^{-2}x = \sigma[x, a^2]a^{-2}x
$$

= $\sigma(1 + (x, a^2)) = \sigma(1 + y) = z(1 + w)(1 + x)(1 + y),$

contradiction.

This shows that there is precisely one nontrivial simple submodule V of E . Then $E = V \oplus \mathcal{C}_E(a)$, and $(a, E) = (a, V) = V$ has dimension 2, i.e. order 4.

(iii) Suppose that U is a subgroup of order 9 in G/C . Since G/C does not contain elements of order 9 by (i), U is elementary abelian.

We consider E as $\mathbb{F}_2[U]$ -module. Again, we may write E as a sum of simple submodules. By [2, theorem 3.2.2], none of these simple modules is faithful (in the sense that the corresponding linear representation of U is faithful, since U is abelian but noncyclic. At least one of the simple submodules is nontrivial, say V. The kernel of V in U must then have order 3, so we write $\mathcal{C}_U(V) = \langle bC \rangle$. Take an element $a \in G$ such that $U = \langle aC, bC \rangle$. Then aC acts nontrivially on V. By (ii), aC acts trivially on all simple submodules $W \neq V$ of E.

On the other hand, bC acts nontrivially on E , i.e. nontrivially on some simple submodule $W \neq V$ of E. But then *abC* is an element of order 3 in G/C which acts nontrivially on both components of $V \oplus W$. This contradicts (ii).

(iv) By (i), the element orders in G/C are bounded by 4. If G/C contains no element of order 3, then $exp(G/C)$ | 4. So suppose that G/C does contain an element of order 3. If it also contains an element of order 2, then there also is an element of order 6 since *G/C* is abelian, contradiction. Hence *G/C* is an elementary abelian 3-group. Since there cannot be a subgroup of order 9 by (iii), G/C must have order 3.

Remark 3.2: Let G be a group with $Z_2 \times Z_2 \times Z_2 \cong G' \nsubseteq \mathcal{Z}(G)$. Then $G' \subseteq C :=$ $\mathcal{C}_G(G') < G$, so G/C is a nontrivial abelian group. We consider G' as an \mathbb{F}_2 -vector space and choose a basis x, y, z . The conjugation action of G on G' produces a representation $G \to GL(3, 2)$ with kernel C. Below we list representatives of all the abelian subgroup conjugacy classes of $GL(3, 2)$ (cf. [10]), and by changing the basis if necessary, we may assume that G is mapped onto one of these:

$$
R:=\left\langle \begin{pmatrix}0&1\\0&1\\0&1\end{pmatrix}\right\rangle\cong Z_3, \hspace{1.5cm} S:=\left\langle \begin{pmatrix}0&1\\1&0&1\\0&1\end{pmatrix}\right\rangle\cong Z_3, \\ T:=\left\langle \begin{pmatrix}0&1&0\\1&0&0\\0&1\end{pmatrix}\right\rangle\cong Z_2, \hspace{1.5cm} U:=\left\langle \begin{pmatrix}0&1\\1&1\\1&1&0\end{pmatrix}\right\rangle\cong Z_4, \\ V:=\left\langle \begin{pmatrix}0&1\\1&1&0\\1&0&0\end{pmatrix},\begin{pmatrix}0&1\\1&1&0\\1&1&0\end{pmatrix}\right\rangle\cong V_4.
$$

In any of these cases, FG is not Lie centre-by-metabelian. This is clear by 3.1 in the case that G is mapped onto S. The other cases are handled by $3.3-3.8$.

LEMMA 3.3: *Let the notation be as in 3.2, and assume that G is mapped onto R. Then FG is not Lie centre-by-metabelian.*

Proof: We assume otherwise. If we write $G/C = \langle aC \rangle$, we have ${}^a x = y$, ${}^a y = z$, ${}^{a}z = x$. For all $c, d \in C$, we have $\sigma := [x + {}^{a}x, ca + {}^{d}(ca)] = [x+y, (1+(d, ca))ca] =$ $(1 + (d, ca))c[x + y, a] = (1 + (d, ca))c(x + y + y + z)a = (1 + (d, ca))(x + z)ca$ and

(*)
$$
0 = [a, \sigma] a^{-2} c^{-1} x = (1 + (d, ca))(x + z)x + (1 + {}^{\alpha}(d, ca))(y + x) {}^{\alpha}c c^{-1} x
$$

$$
= (1 + (ca, d))(1 + xz) + (1 + {}^{\alpha}(ca, d))(1 + xy)(a, c).
$$

Setting $c = 1$ and expanding parentheses, we obtain

$$
0 = (a, d) + xz + (a, d)xz + {^a}(a, d) + xy + {^a}(a, d)xy.
$$

If $(a, d) \notin \langle xy, yz \rangle \subseteq G$, then the projection of the right hand side onto $\mathbb{F}[\langle xy, yz \rangle]$ w.r.t. the vector space decomposition $\mathbb{F}G = \bigoplus_{a \in G} \mathbb{F}g$ is $xz + xy \neq 0$, contradiction. This shows that $(a, d) \in \langle xy, yz \rangle$ for all $d \in C$, i.e. $(a, C) \subseteq \langle xy, yz \rangle$.

Since $C' \subseteq \mathcal{Z}(G) \cap G' = \langle xyz \rangle$ and $(a, C)C' = G' \nsubseteq \langle xy, yz \rangle$, we have $C' =$ $\langle xyz \rangle$. Let $c, d \in C$ with $(c, d) = xyz$. Then $(*)$ yields

$$
0 = (1 + xyz(a, d))(1 + xz) + (1 + xyza(a, d))(1 + xy)(a, c),
$$

but the projection of the right hand side onto $\mathbb{F}[\langle xy, yz \rangle]$ is

$$
(1+xz)+(1+xy)(a,c)=1+xz+(a,c)+xy(a,c),
$$

which cannot vanish, for $(a, c) \in \langle xy, yz \rangle = \{1, xy, yz, xz\}.$

LEMMA 3.4: *Let the notation be as in 3.2,* and *assume* that *G is mapped onto U. Then FG is not Lie centre-by-metabelian.*

Proof: We write $G/C = \langle aC \rangle$. Then $x = yz$, $y = xyz$, $z = xy$. By the introductory remarks of this paper, we have $C' \subseteq G' \cap \mathcal{Z}(G) = \langle xz \rangle$ and $G' = (a, C)C'$. Since $G' \nsubseteq \langle y, xz \rangle$, also $(a, C) \nsubseteq \langle y, xz \rangle$.

So let $c \in C$ such that $(a, c) \in G' \setminus \langle y, xz \rangle$. Then

$$
[x + {^a}x, a + {^c}a] = [x + {^a}x, (1 + (a, c))a] = (1 + (a, c)) [x + {^a}x, a]
$$

= (1 + (a, c))(x + {^a}x)a = (1 + (a, c))(1 + xz)xa =: σ ,

and

$$
[a, \sigma]a^{-2}x = (1 + xz) [a, (1 + (a, c))x]a^{-1}x
$$

= (1 + xz) ((1 + (a, c))xa + (1 + ^a(a, c))^axa) a⁻¹x
= (1 + xz) (1 + (a, c) + yzx + ^a(a, c)yzx)
= (1 + xz) (1 + (a, c) + y + ^a(a, c)y).

Since $(a, c), ^{a}(a, c) \notin \langle y, xz \rangle \subseteq G$, the projection of the last term onto $\mathbb{F}[\langle y, xz \rangle]$ is $(1 + xz)(1 + y) \neq 0$. Hence $[FG, (FG)'] \neq 0$.

LEMMA 3.5: *Let the notation be as in 3.2, and assume that G is mapped onto V. Then FG is* not *Lie centre-by-metabelian.*

Proof: We assume that $\mathbb{F}G$ is Lie centre-by-metabelian. We write $G/C =$ $\langle aC, bC \rangle$ with $a, b \in G$ such that ${}^a x = z$, ${}^a y = y$, ${}^a z = x$, and ${}^b x = yz$, ${}^b y = y$, $b_z = xy$. Then $C_{G'}(a) = C_{G'}(b) = G' \cap \mathcal{Z}(G) = \langle y, xz \rangle$, and the lower central series of G is $G \trianglerighteq \langle x, y, z \rangle \trianglerighteq \langle y, xz \rangle \trianglerighteq 1$. Hence G has class 3.

Let $g, h \in G$. Then

$$
(g2h, hg) = g2(h, hg)(g2, hg) = (hg, h)(g2, h) = h(g, h)g(g, h) \cdot (g, h),
$$

and thus

$$
[[g, h],[g,gh]]
$$

= [(1 + (g,h))hg, (1 + (g,gh))g²h] = [(1 + (g,h))hg, (1 + ⁹(g,h))g²h]
= (1 + (g,h))(1 + ^h(g,h))hg \cdot g²h + (1 + ⁹(g,h))(1 + ^h(g,h))g²h \cdot hg
= (1 + ^h(g,h)) ((1 + (g,h)) + (1 + ⁹(g,h))^h(g,h) ⁹(g,h)(g,h)) hg³h
= (1 + ^h(g,h))(1 + (g,h) + (1 + ⁹(g,h))(g,h)) hg³h
= (1 + ^h(g,h))(1 + ⁹(g,h)(g,h))hg³h
= (1 + ^h(g,h))(1 + (g,g,h))hg³h.

Now $(g, hg^3h) = (g,h)^{hg^3}(g,h) = (gh,g,h) = (g,g,h)(h,g,h)$, since $\gamma_3(G) \subseteq$ $\mathcal{Z}(G)$, and $h'(g,h)(1+(g,h)) = -h(g,h)(g,h)(1+(g,h)) = (h,g,h)(1+(g,h)).$ Hence

$$
0 = [g, [g, h], [g, gh]] = (1 + (g, g, h))[g, (1 + {}^h(g, h))hg^3h]
$$

\n
$$
= (1 + (g, g, h)) ((1 + {}^h(g, h)) + (1 + {}^{gh}(g, h))(h, g, h)) hg^3hg
$$

\n
$$
(*) = (1 + (g, g, h)) (1 + {}^h(g, h) + (h, g, h) + (gh, g, h)(g, h)(h, g, h)) hg^3hg
$$

\n
$$
= (1 + (g, g, h)) (1 + {}^h(g, h) + {}^h(g, h)(g, h) + (g, h)) hg^3hg
$$

\n
$$
= (1 + (g, g, h))(1 + {}^h(g, h))(1 + (g, h))hg^3hg
$$

\n
$$
= (1 + (g, g, h))(1 + (h, g, h))(1 + (g, h))g^4h^2.
$$

Let us assume that there exists an element $c \in C$ such that $(a, bc) \notin \mathcal{Z}(G)$. Then $(a, a, bc) = xz$ and $(bc, a, bc) = xyz$. If we substitute $g := a$ and $h := bc$ in (*), we obtain the contradiction $0 = (1 + (a, a, bc))(1 + (bc, a, bc))(1 + (a, bc)) =$ $(1+xz)(1+xyz)(1+(a,bc)) = (G' \cap \mathcal{Z}(G))^{+}(1+(a,bc)) \neq 0.$

Consequently $(a, bc) \in \mathcal{Z}(G)$ for all $c \in C$; in particular $(a, b), (a, b^{-1}) \in \mathcal{Z}(G)$ since $bC = b^{-1}C$. It follows that $(a, c) = (a, b^{-1}bc) = (a, b^{-1})(a, bc) \in \mathcal{Z}(G)$ for all $c \in C$, and similarly $(a, ac), (a, abc) \in \mathcal{Z}(G)$. Since

$$
G = C \cup aC \cup bC \cup abC,
$$

we find that $(a, G) \subseteq \mathcal{Z}(G)$. But then

$$
(a,g^{-1},h)=(a,g^{-1},h)\cdot 1\cdot 1=(a,g^{-1},h)(g,h^{-1},a)(h,a^{-1},g)=1
$$

for all $g, h \in G$ by Witt's identity, which shows that a acts trivially on G' , contradiction.

LEMMA 3.6: *Suppose that G is a group of class at most 3 such that G' and* $G/C_G(G')$ both have exponent 2, and $|\gamma_3(G)| \leq 2$. If FG is Lie centre-by*metabelian, then* $|\langle (g,h), g(g,h), (g,k) \rangle| \leq 4$ for all $g, h, k \in G$.

Proof: Since $|\gamma_3(G)| \leq 2$, we have $(1 + (f, g, h))(i, j, k) = (1 + (f, g, h)),$ and thus $(1+(f,g,h))^{k}(i,j) = (1+(f,g,h))(i,j)$, for all $f,g,h,i,j,k \in G$. Using this, an easy but lengthy calculation (similar to the ones above) shows that under the given hypothesis, the following equation holds for all $g, h, k \in G$ (cf. [7]):

$$
0 = [g, g + {}^{k}g, h + {}^{g}h] = (1 + (g, h))(1 + {}^{g}(g, h))(1 + (g, k))g^{2}h.
$$

This, together with the remarks in the introduction of this paper, implies the claim. I

LEMMA 3.7: *Let the notation be as in 3.2, and assume that G is mapped onto W. Then FG is not Lie centre-by-metabelian.*

Proof: Assume that $\mathbb{F}G$ is a counterexample.

We write $G/C = \langle aC, bC \rangle$ with $a, b \in G$ such that ${}^a x = z$, ${}^a y = y$, ${}^a z = x$, and ${}^b x = z$, ${}^b y = xyz$, ${}^b z = x$. Then $C_{G'}(a) = \langle y, xz \rangle$, $C_{G'}(b) = \langle xy, yz \rangle$, and $G' \cap \mathcal{Z}(G) = \langle xz \rangle$. The lower central series of G is $G \trianglerighteq \langle x, y, z \rangle \trianglerighteq \langle xz \rangle \trianglerighteq 1$. By 3.6,

$$
(\ast) \qquad \qquad | \langle (g,h), \, ^g \! (g,h), (g,c) \rangle | \leq 4.
$$

for all $g, h \in G$, $c \in C$.

Note that the introductory remarks of this paper imply that

$$
G' = \langle (a, b) \rangle (a, C)(b, C)C'
$$

\n
$$
= \langle (a, ab) \rangle (a, C)(ab, C)C'
$$

\n
$$
= \langle (ab, b) \rangle (ab, C)(b, C)C'.
$$

We already know that $C' \subseteq G' \cap \mathcal{Z}(G) = \langle xz \rangle$. We show now that also $(a, b) \in \langle xz \rangle$:

ASSUMPTION: $(a, b) \in \{x, z\}$. Then $4 \geq |\langle (a, b), \alpha(a, b), (a, c) \rangle| = |\langle x, z(a, c) \rangle|$, and $4 \geq |\langle (b,a), \, ^{b}(b,a), (b,c) \rangle| = |\langle x, z, (b,c) \rangle|$ by (*). Therefore, $(a,b), (a,c),$ $(b, c) \in \langle x, z \rangle$ for all $c \in C$. Together with $(**)$, this implies $G' \subseteq \langle x, z \rangle$, contradiction. !

ASSUMPTION: $(a, b) \in \{xy, yz\}$. Then we have $4 \geq |\langle (a, b), \alpha(a, b), (a, c) \rangle|$ $|\langle xy, yz, (a, c)\rangle|$, and

$$
4 \geq |\langle (ab,a), \, {}^{ab}\!(ab,a), (ab,c) \rangle| = |\langle \, {}^{a}\!(b,a), \, {}^{b}\!(b,a), (ab,c) \rangle| = |\langle xy, yz, (b,c) \rangle|.
$$

Similarly as above, this implies $G' \subseteq \langle xy, yz \rangle$, contradiction.

ASSUMPTION: $(a,b) \in \{y, xyz\}$. In this case, $4 \geq |\langle (b,a), b(b,a), (b,c) \rangle|$ $|\langle y, xyz, (b, c) \rangle|$, and

$$
4\geq\left|\left\langle (ab,a),\,{}^{ab}\!(ab,a),(ab,c)\right\rangle\right|=\left|\left\langle\,{}^{a}\!(b,a),\,{}^{b}\!(b,a),(ab,c)\right\rangle\right|=\left|\left\langle y,xyz,(a,c)\right\rangle\right|.
$$

This produces the contradiction $G' \subseteq \langle y, xyz \rangle$.

Hence $(a, b) \in \langle xz \rangle$, as desired. We show next that $(b, d) \in \langle xz \rangle$ for all $d \in C$:

ASSUMPTION: $(b, d) \in \{x, z\}$. If $c \in C$, then $(d, c) \in \langle xz \rangle$, and

$$
4 \geq |\langle (bd, b), \frac{bd(bd, b), (bd, c) \rangle| = |\langle x, z, (b, c) \rangle|,
$$

and therefore $(b, d) \in \langle x, z \rangle$. Moreover,

$$
4 \geq |\langle (ad, b), \ a^d(ad, b), \ (ad, c) \rangle| = |\langle x, z, (a, c) \rangle|,
$$

hence also $(a, c) \in \langle x, z \rangle$. We arrive at the already familiar contradiction $G' \subseteq$ $\langle x,z\rangle$.

ASSUMPTION: $(b,d) \in \{xy,yz\}$. We have $4 \geq |\langle (ad,b), \, ^{ad}(ad,b), (ad,d) \rangle| =$ $|\langle \alpha(d,b)(a,b), (d,b)(a,b), (a,d)\rangle| = |\langle xy, yz, (a,d)\rangle|$. Hence $(a,d) \in \langle xy, yz\rangle$. But then Witt's formula implies $xz = (a, b, d) = (b^{-1}, d^{-1}, a)(d, a^{-1}, b^{-1}) =$ $(b, d^{-1}, a) = (b, a, d) = 1$, contradiction.

ASSUMPTION: $(b, d) \in \{y, xyz\}$. If $c \in C$, then

$$
4 \geq \left| \left\langle (bd,b), \frac{bd(bd,b), (bd,c)} \right\rangle \right| = \left| \left\langle y, xyz, (b,c) \right\rangle \right|,
$$

and $4 \geq |\langle (abd, b), \frac{abd(abd, b), (abd, c) \rangle| = |\langle y, xyz, (ab, c) \rangle|$, hence $(b, c), (ab, c) \in$ $\langle y, xyz \rangle$. This produces the contradiction $G' \subseteq \langle y, xyz \rangle$.

This shows that $(b,d) \in \langle xz \rangle = G' \cap \mathcal{Z}(G)$. Observe now that by Witt's formula, $1 = (b, a^{-1}, d)(a, d^{-1}, b)(d, b^{-1}, a) = (b, a^{-1}, d)$. Consequently (a, C) $(a^{-1}, C) \subseteq C_{G'}(b)$. But then $(**)$ implies that $G' \subseteq C_{G'}(b)$, contradiction.

LEMMA 3.8: *Let* the *notation be as in 3.2, and* assume *that G is mapped onto* T. Then FG *is* not *Lie centre-by-metabelian.*

Proof: Let G satisfy the prerequisites of the lemma. Then $|G/C| = 2$, i.e. $G/C = \langle aC \rangle$ for all $a \in G \setminus C$.

In a first step, we claim that there is an element $a \in G \setminus C$ such that (a, C) $G'.$

We assume otherwise and pick an arbitrary element $a \in G \setminus C$. As usual, $G' = (a, C)C'$ with normal subgroups (a, C) and C' of G. Since $C' \subseteq \mathcal{Z}(G)$ and $G' \nsubseteq \mathcal{Z}(G)$, there is an element $c \in C$ such that $^{\alpha}(a,c) \neq (a,c)$. Let $x := (a, c), y := (a, c)$. Then $(a, C) = \langle x, y \rangle$ for order reasons. Furthermore, there must be elements $d, e \in C$ with $z := (d, e) \notin \langle x, y \rangle$. Then $G' = \langle x, y, z \rangle$, and $C' \subseteq G' \cap \mathcal{Z}(G) = \langle xy, z \rangle$.

Now consider *(da, C).* Similarly as above, it must be a proper subgroup of *G'* that is normal in G and nontrivially acted upon by G/C . Hence $(da, C) = \langle x, y \rangle$ or $(da, C) = \langle xz, yz \rangle$. Since $(da, e) = (d, e)(a, e) \in (d, e)(a, C) = z \langle x, y \rangle$, the case $(da, C) = \langle xz, yz \rangle$ must be the correct one. Because of $z = (d, e) = (ed, e)$, we may replace d by *ed* in this argumentation, and find that also $(eda, C) = \langle xz, yz \rangle$. But then $(eda, d) = z(da, d) \in (eda, C) \cap z(da, C) = \langle xz, yz \rangle \cap z \langle xz, yz \rangle = \emptyset$, contradiction.

We want to show next that $\mathbb{F}G$ is not Lie centre-by-metabelian.

Again, assume otherwise and choose elements $a, x, y, z \in G$ such that $G/C =$ $\langle aC \rangle$, $(a, C) = G' = \langle x, y, z \rangle$, and ${}^a x = y$, ${}^a y = x$, ${}^a z = z$.

The lower central series of *G* is $G \trianglerighteq \langle x, y, z \rangle \trianglerighteq \langle xy \rangle \trianglerighteq 1$, so Lemma 3.6 applies here.

Since $(a, C) = G' \not\subseteq \mathcal{Z}(G)$, there is an element $c \in C$ with $|\langle (a, c), \alpha(a, c) \rangle| = 4$. On the other hand, 3.6 implies that $|\langle (a, c), \alpha(a, c), (a, d) \rangle| \leq 4$ for all $d \in C$. Together this shows that $|(a, C)| \leq 4$, in contradiction to $|(a, C)| = |G'| = 8$. **I**

Remark 3.9: We have established Theorem 1 for all groups G with $\exp(G') = 2$ and $|G'| \leq 8$. Before we turn to the case where $|G'|$ is arbitrary in 3.12, let us study two particular situations in the following lemmata.

LEMMA 3.10: Let N be an elementary abelian normal subgroup of order 2^{n+1} $(n \in \mathbb{N}_0)$ of a group G such that $N \cap \mathcal{Z}(G) = (G, N)$ has order 2. Write $N = \langle x_1, \ldots, x_n, z \rangle$ with $N \cap \mathcal{Z}(G) = \langle z \rangle$. Then $G/C_G(N)$ is elementary abelian *of order* 2^n *. More exactly, there are elements* $a_1, \ldots, a_n \in G$ such that for all $i, j \in \{1, \ldots, n\},\$

$$
(a_i, x_j) = \begin{cases} 1 & \text{if } i \neq j, \\ z & \text{if } i = j. \end{cases}
$$

Proof: The action of G by conjugation on the \mathbb{F}_2 -vector space N w.r.t. the basis x_1, \ldots, x_n, z defines a matrix representation $\Delta: G \to GL(n+1, 2)$ with kernel $\mathcal{C}_G(N)$ and image

$$
B\subseteq A:=\begin{pmatrix}1&&&0\\&\ddots&&\vdots\\&&1&0\\ *&\ldots&*&1\end{pmatrix}\subseteq GL(n+1,2).
$$

The elementary abelian group A may be interpreted as an \mathbb{F}_2 -vector space of dimension *n* with subspace B. So let us choose a basis b_1, \ldots, b_k of B with $k \leq n$. It clearly suffices to show that $B = A$, or equivalently, $k = n$.

Again shifting our point of view, we now interpret the elements b_i , $i = 1, \ldots, k$, as \mathbb{F}_2 -linear mappings $N \to N$, and compute $\dim \mathcal{C}_N(b_i) = \dim \text{Ker}(b_i - \text{id}_N) =$

 $\dim N - \text{rk}(b_i - \text{id}_N) = (n+1) - 1 = n$; i.e. $\mathcal{C}_N(b_i)$ is a hyperplane in N. Hence $k = \dim C_N(B) = \dim \bigcap_{i=1}^k C_N(b_i) \ge (n+1)-k \ge 1$. This shows $k = n$.

LEMMA 3.11: *Let G be a group that is generated by three elements, with elementary abelian commutator subgroup G' of order* 16, *such that* $(G, G') = G' \cap \mathcal{Z}(G)$ has order 2. *Then FG is not Lie centre-by-metabelian.*

Proof: We assume that $\mathbb{F}G$ is Lie centre-by-metabelian, and write $G = \langle q, h, k \rangle$ and $(G, G') = \langle z \rangle$. Note that G has class 3. Then $G/\langle z \rangle$ has class 2, hence its commutator subgroup is generated by the commutators of its own generators, i.e. $G'/\langle z \rangle = \langle (g, h), (g, k), (h, k), z \rangle / \langle z \rangle$. Since $G'/\langle z \rangle$ has order 8, also $\langle (g, h), (g, k), (h, k) \rangle$ has order 8.

If we set $w := (g, h), x := (g, k), y := (h, k)$, we obtain $G' = \langle w, x, y, z \rangle$.

Assume that $\alpha w \neq w$. Then $\alpha w = wz$. So if $\alpha w \neq w$, then $\alpha w \neq w$. Choose $\tilde{h} \in \{h, hq\}$ with $\tilde{h}_w = w$. Another computation in the usual style (which we will skip here, see [7, lemma 4.11] for details) then leads to the following contradiction:

$$
0 = (1+x)[k, g + {}^{h}g, \tilde{h} + {}^{g}\tilde{h}] = (1+x)(1+x)(1+w)(1+y)g\tilde{h}k \neq 0.
$$

Therefore $(g, g, h) = (g, w) = 1$. Similarly one shows that

$$
(*)\qquad \qquad (r,r,s)=1
$$

for all $r, s \in \{g, h, k\}$. Hence $(r, s)(r^{-1}, s) = r^{-1}(r, s)(r^{-1}, s) = (r^{-1}r, s) = 1$, i.e.

$$
(**) \qquad \qquad (r^{-1},s) = (s,r) = (r,s)
$$

for all $r, s \in \{q, h, k\}.$

Since $G/C_G(G') = \langle g, h, k \rangle / C_G(G')$ is elementary abelian of order 8 by 3.10, the elements q, h, k all act nontrivially on G' . Together with $(*)$, it follows that $(g, y) = z$, $(h, x) = z$, $(k, w) = z$. But then

$$
z = z3 = (g, y)(h, x)(k, w) = (g, h, k)(h, g, k)(k, g, h)
$$

= $(g, h-1, k)(h, k-1, g)(k, g-1, h) = 1$

by $(**)$ and Witt's identity, contradiction.

LEMMA 3.12: Let G be a group with $exp(G') = 2$ and $|G'| \geq 8$. If FG is Lie *centre-by-metabetian, then G has cIass 2.*

Proof: Let G be a counterexample. Then FG is Lie centre-by-metabelian, $\exp(G') = 2$, $\gamma_3(G) \neq 1$, and, by 3.9, $|G'| \geq 16$.

Set $C := \mathcal{C}_G(G')$. Then G/C is abelian. By 3.1, $\exp(G/C) \mid 4 \text{ or } |G/C| = 3$. In the latter case, 3.1 also implies that $G' = (G, G') \times C_{G'}(G) = \gamma_3(G) \times (Z(G) \cap G')$ and $\gamma_4(G) = (G, \gamma_3(G)) = \gamma_3(G) = (G, G') \cong V_4$. We write $\mathcal{Z}(G) \cap G' = \langle z \rangle \times N$ for some $z \in G'$, $N \leq G'$. Then G/N is a non-nilpotent group with $(G/N)' =$ $G'/N \cong Z_2 \times Z_2 \times Z_2$. Then by 3.9, $\mathbb{F}[G/N]$ is not Lie centre-by-metabelian, contradiction. Therefore, $\exp(G/C)$ | 4.

We claim next that $\gamma_3(G)$ is a finite 2-group. By [5], G has a subgroup A of index at most 2, such that A' is a finite 2-group. If $G = A$, then our claim follows immediately.

So suppose $G \neq A$, and let $t \in G \setminus A$. Then $G' = (t, A)A' \subseteq A$ as usual. Similarly, $\gamma_3(G) = (G, G') = (A, G')(t, G') \subseteq A'(t, G')$, since $(A, G') \subseteq G$ and $(ta, h) = {}^t(a, h)(t, h) \in (A, G')(t, G')$ for all $a \in A$, $h \in G'$. Now G' is abelian, and thus $(t, xy) = (t, x)(t, y)$ for all $x, y \in G'$. Therefore $(t, G') = (t, A'(t, A)) =$ $(t, A')(t, t, A) \subseteq A'(t, t, A) = A'(t, \langle (t, a): a \in A \rangle) = A' \langle (t, t, a): a \in A \rangle$, hence $\gamma_3(G) \subseteq A' \langle (t,t,a): a \in A \rangle$. But for $a \in A$, one has $(t,t,a) = {}^t(t,a)(t,a)^{-1} =$ $f(t,a)(t,a) = (t^2,a) \in A'$. This shows $\gamma_3(G) \subseteq A'$. Now since A' is finite, $\gamma_3(G)$ is finite, too (and of exponent 2).

Then $G/C_G(\gamma_3(G))$ is also a finite group; in fact, it is a finite 2-group, because of $\exp(G/C_G(\gamma_3(G)))$ | $\exp(G/C)$ | 4. Considered as $\mathbb{F}_2[G/C_G(\gamma_3(G))]$ -module, $\gamma_3(G)$ contains a submodule in every possible dimension. In other words: For any $q \in \{2, 4, 8, \ldots, |\gamma_3(G)|\}$, there is a subgroup N of $\gamma_3(G)$ of order q which is normal in G.

Assume that $|G' : \gamma_3(G)| \leq 4$. Pick a subgroup N of $\gamma_3(G)$ such that $N \trianglelefteq G$ and $|G' : N| = 8$. Then G/N is a counterexample to 3.9, contradiction. Hence $|G': \gamma_3(G)| \geq 8.$

We now choose a normal subgroup N of G with $N \subseteq \gamma_3(G)$ and $|\gamma_3(G): N| = 2$. Then *G/N* is also a eounterexample, so after replacing G by *G/N,* we may assume that $|\gamma_3(G)| = 2$. Then $\gamma_3(G)$ is central, and G has class 3. We write $\gamma_3(G) = \langle z \rangle$.

Clearly, there is a finite set $X \subseteq G$ such that $|\langle X \rangle'| \geq 16$ and $\langle X \rangle' \nsubseteq \mathcal{Z}(G)$. By possibly adding one element of G to X which acts nontrivially on some commutator of $\langle X \rangle$, we may assume that also $\langle X \rangle$ has class 3, i.e. $\gamma_3(\langle X \rangle) = \langle z \rangle$. Therefore also $\langle X \rangle$ is a counterexample, and after replacing G by $\langle X \rangle$, we may assume that G is finitely generated.

Then $G/\langle z \rangle$ is a finitely generated group of class 2, so $G'/\langle z \rangle$ is finitely generated, too. In fact, it is finite since it is elementary abelian. But then also G' is finite.

From now on, we may argue by induction on $|G'|$. We write $|G'| = 2^{n+1}$ with

 $n \geq 3$, and assume that the lemma is already proved for every applicable group H with $|H'| \leq 2^n$.

If $s \in (G' \cap \mathcal{Z}(G)) \setminus \{1\}$, then, by induction, $G/\langle s \rangle$ has class 2. Therefore $\langle z \rangle = \gamma_3(G) \subseteq \langle s \rangle$, hence $s = z$ and $G' \cap \mathcal{Z}(G) = \langle z \rangle = \gamma_3(G)$.

We write $G' = \langle x_1, \ldots, x_n, z \rangle$ with $x_1, \ldots, x_n \in G' \setminus \mathcal{Z}(G)$. By 3.10, there are elements $a_1, \ldots, a_n \in G$ such that

$$
(a_i,x_j)=\begin{cases} 1 & \text{if } i\neq j\\ z & \text{if } i=j \end{cases} \quad \text{ for all } i,j=1,\ldots,n,
$$

and $G/C = \langle a_1C, \ldots, a_nC \rangle$ is an elementary abelian group of order 2^n . Hence $H_1 := \langle a_2, a_3, \ldots, a_n, C \rangle$ and $H_2 := \langle a_1, a_3, \ldots, a_n, C \rangle$ are normal subgroups of G of index 2 with $G = H_1 H_2$.

In the case $H'_1 = G'$, we have $\mathcal{Z}(H_1) \cap H'_1 = \mathcal{C}_{G'}(H_1) = \mathcal{C}_{G'}(a_2,...,a_n)$ $\langle z, x_1 \rangle$ and $\langle z \rangle \supseteq (H_1, H_1') = (H_1, G') \supseteq (a_2, G') = \langle z \rangle$. Hence H_1 is a group of class 3, and therefore also a counterexample. Then $H_1/\langle x_1 \rangle$, which also has class 3, is also a counterexample whose commutator subgroup is elementary abelian of order 2^n . But this contradicts the induction hypotheses.

Therefore $H'_1 < G'$. Then induction implies that $|H'_1| \leq 4$ or $\text{cl}(H_1) = 2$.

If H_1 has class 2, then $H'_1 \subseteq C_{G'}(H_1) = \langle x_1, z \rangle$. Therefore, we have $|H'_1| \leq 4$ in any case. Moreover, since $G' \subseteq C \subseteq H_1$, we know that $\langle z \rangle = (H_1, G') \subseteq H'_1$, and therefore $|H'_1/\langle z \rangle| \leq 2$. Similarly, $|H'_2/\langle z \rangle| \leq 2$.

Since $G/\langle z \rangle$ has class 2 and is generated by $C \cup \{a_1, \ldots, a_n\}$, we have

$$
G'/\langle z\rangle=\langle (a_1,a_2)\rangle\, H_1' H_2'/\langle z\rangle\,.
$$

It follows that $|G': \langle z \rangle| \leq |\langle (a_1,a_2), z \rangle : \langle z \rangle| \cdot |H'_1 : \langle z \rangle| \cdot |H'_2 : \langle z \rangle| \leq 2 \cdot 2 \cdot 2 = 8$, and thus $16 \leq |G'| = 2 |G' : \langle z \rangle| \leq 16.$

Consequently $n = 3$, $G' = \langle x_1, x_2, x_3, z \rangle$, and $G/C = \langle a_1 C, a_2 C, a_3 C \rangle$. Then (a_1,a_2) must not be contained in $\langle (a_1,a_3), (a_2,a_3) \rangle \subseteq H'_1H'_2$, for otherwise $|G'| < 16$. Similarly one shows that $(a_1, a_3) \notin \langle (a_1, a_2), (a_2, a_3) \rangle$ and $(a_2, a_3) \notin$ $|\langle(a_1,a_2), (a_1,a_3)\rangle|$. Hence $|\langle(a_1,a_2), (a_1,a_3), (a_2,a_3)\rangle| = 8$, i.e. $|\langle a_1,a_2,a_3\rangle'| \ge$ 8. Then $\langle a_1, a_2, a_3 \rangle$ acts nontrivially on $\langle a_1, a_2, a_3 \rangle'$, hence $\text{cl}(\langle a_1, a_2, a_3 \rangle) > 2$. By 3.9, $|\langle a_1, a_2, a_3 \rangle'| \ge 16$, and thus $\langle a_1, a_2, a_3 \rangle' = G'$. But then $\langle a_1, a_2, a_3 \rangle$ is a counterexample to 3.11, contradiction.

References

[1] A. Bovdi, *The group of units of a group algebra of characteristic p,* **Publications Mathematicae Debrecen 52 (i998), 193-244.**

- [2] D. Gorenstein, *Finite Groups*, Harper & Row, New York, 1968.
- [3] B. Huppert, *Endliche Gruppen I,* Springer-Verlag, Berlin, 1967.
- [4] B. Kfilshammer and R. K. Sharma, *Lie centrally metabelian group rings in characteristic 3, Journal of Algebra 180 (1996), 111-120.*
- [5] I. B. S. Passi, D. S. Passman and S. K. Sehgal, *Lie solvable group* rings, Canadian Journal of Mathematics 25 (1973), 748-757.
- [6] D. S. Passman, *The Algebraic Structure of Group Rings,* Wiley, New York, 1977.
- [7] R. Rossmanith, Centre-by-metabelian group algebras, Dissertation, Friedrich-Schiller-Universität, Jena, 1997.
- [8] R. Rossmanith, *Lie centre-by-metabelian group algebras in even characteristic, H,* Israel Journal of Mathematics, this volume.
- [9] M. Sahai and J. B. Srivastava, *A note on Lie centrally metabelian group algebras,* Journal of Algebra 187 (1997), $7-15$.
- [10] M. Schönert et al., *GAP*—*Groups*, *Algorithms*, and *Programming*, fifth edition, version 3, release 4, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen, 1995.
- [11] A. Shalev, *The derived length of Lie soluble group* rings I, Journal of Pure and Applied Algebra 78 (1992), 291-300.
- [12] R. K. Sharma and J. B. Srivastava, *Lie centrally metabelian group* rings, Journal of Algebra 151 (1992), 476-486.