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A B S T R A C T  

We complete the classification of the Lie centre-by-metabelian group 
algebras over arbitrary fields by solving the case of characteristic 2. 

Let G be a group (not necessarily finite), and let FG be its group algebra over 

some field F of characteristic p > 0. For subsets X, Y of FG, we denote by 

[X, Y] the F-span of all elements [x, y] := xy - yx with x C X, y C Y. The 

first and second derived Lie ideals of FG are defined as (FG)' := [FG, FG] and 

(FG)" := [(FG)', (FG)'], respectively. (Note that these are Lie ideals, but not 

necessarily associative ideals of FG.) We call FG Lie c e n t r e - b y - m e t a b e l i a n ,  

if [FG, (FG)"] = 0. (In this case FG/Z(FG) ,  regarded as a Lie algebra, is 

metabelian.) 

Sharma and Srivastava showed in [12] that such group algebras are necessarily 

commutative if p > 3. By a general theorem of Passi, Passman and Sehgal [5], 

the same holds for p = 0. The case p = 3 is more interesting, since then FG is 

Lie centre-by-metabelian if and only if [G'I �9 {1, 3} (cf. Kiilshammer-Sharma [4], 

Sahai-Srivastava [9]). In his survey article [1], A. Bovdi posed the problem for 

the remaining case p = 2. Its solution shall be presented here, as follows: 

THEOREM 1: Let G be a group, and let F be a field of characteristic 2. Then 

FG is Lie centre-by-metabelian, if and only i f  one of the following conditions is 

satisfied: 

(i) [G' I divides 4. 

(ii) G t is central and elementary abelian of order 8. 
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(iii) G acts by element inversion on G' ~ Z2 • Z4, and CG(G')' c O(G'). 
(iv) G contains an abelian subgroup of index 2. 

Roughly speaking, this means that either G' has to be "small" (conditions (i), 

(ii), and (iii)), or G contains a "large" abelian subgroup (condition (iv)). 

This paper first handles the (comparatively easy) "if"-direction in section 1. 

We then prove the converse direction for groups of class 2 in section 2, and for 

groups with commutator subgroups of exponent 2 in section 3 (by showing that 

they necessarily are of class 2 in our setting). In a second paper [8], devoted to 

groups that  act more vigorously on their commutator subgroups, the proof of 

the theorem will be completed. (Both papers have their origin in the author's 

dissertation thesis [7].) 

For elements a, b of the group G, we wilt use "left" commutators (a, b) := 

aba-lb -1, "left" conjugation ~ := aba -1, and "right normed triple commuta- 

tors" (a, b, c) := (a, (b, c)). The lower central series of G is written as G = 71(G) [> 

72(G) t> 73(G) __ "" ", and, if G is nilpotent, its class is denoted by cl(G). As 

usual, G' is the commutator subgroup of G, r  is the Frattini subgroup of G, 

and, if G is a p-group, then ~(G) is the subgroup generated by all elements of 

order p. The letters An, D2n, Q8, Sn, V4, Zn refer to popular isomorphism types 

of groups. 

Similarly as above, we set [a, b, c] := [a, [b, c]] for elements a, b, c of FG, and we 

write the lower central Lie series of FG as FG = 71 (FG) ~ ~/2(FG) > 73(FG) E> . . .  

(note again that this is a descending chain of Lie ideals, and not ideals, of FG). 

The sum over all elements of a finite subset X of FG is written as X +. 

If the integer n divides the integer m, we write n I m. 

Let us henceforth fix t h e  c h a r a c t e r i s t i c  of the base field F as p = 2. 

It is now a trivial observation that for any subgroup X of G, we have 

X + ( l + x )  = 0 if and only i f x  6 X. Moreover, i f X  = ( x l , . . . , x n )  has ex- 

ponent exp(X) = 2, it is easily checked that 

X iflXl=2 n, 
( l + X l ) ( l + x 2 ) . . - ( l + x n ) - - - -  0 i f [X 1 < 2  n. 

Another easy exercise is to show the following: If G' C_ N _<a G and GIN = 

( a l N , . . . , a n N ) ,  then G' = ((ai,aj): 1 <_ i < j < n) ( a l , N ) . "  (a,~,N) N' .  We 

will apply this often to N := Ca(G') in the case that G' is abelian. 

We will also frequently use the fact that Ca (G') '  C_ G'N Z (G), which is a direct 

consequence of the Witt  identity [3, Satz III.1.4]. 
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1. T h e  easy  d i rec t ion  

Remark 1.1: For any group G we denote by cv(FG) := F{1 + g: g �9 G} the 

augmentation ideal of FG. If H <3 G, then c0(FH) FG = FG co(FH) is the kernel 

of the canonical epimorphism FG -4 F[G/H] (cf. [6, lemma 1.1.8]. In particular, 

FGflo(FG')FG ~ F[G/G'] is abelian, hence (FG)' C_ co(FG') FG. Then 

( F G ) "  c_ c_ 2 = 2 F a .  

Moreover, (G') + ]FG is a central ideal of FG, since G t _<a G implies (G') + �9 

Z(FG), and for g, h �9 G, we have 

[(G')+g, h] = (G')+[g, h] = (G')+(1 + (g, h))hg = O. 

LEMMA 1.2: Let G be a group with IG' I = 2. Then (FG)' C_ (G') +FG.  In 

particular, FG is Lie centre-by-metabelian. 

Proof." We write G ~ = (x). Then (FG)' C_ w(FG') FG = (1 + x) FG = (G~) + FG. 
| 

LEMMA 1.3: Let G be a group with IG'I = 4. Then (FG)" C_ (G') + FG. In 

particular, FG is Lie centre-by-metabelian. 

Proof: 

CASE 1: G' = (x,y)  ~- V4. It is easily verified that  (FG)" C w(FG')2FG = 

(1 + x)(1 + y)1FG = (G') + FG. 

CASE 2: G' = (x) ~ Z4. We consider the canonical epimorphism FG -4 
]F[G/<x2>]. By 1.2, "f3(~[G/<x2>]) = O, SO 73(]FG) C a~(]F <x2))FG = (1 + x  2) FG. 

Check that  x 2 �9 Z(G) ,  and w(FG') 3 FG = (G') + FG. Then (FG)" C 74(FG) = 

[FG, Ta(IFG)] c_ [FG, (1 +z2)IFG] = (1 +x2)[FG,IFG] = (1 + x ) 2 ( F G ) '  c_ 
co(]FG') 3. FG C_ (G') + FG. | 

LEMMA 1.4: Let G be a group of class 2 with G' -~ Z2 x Z2 x Z2. Then (FG)" C 

(G') + FG. In particular, FG is Lie centre-by-metabelian. 

Proof: We have exp(G') -- 2 and G' C_ Z(G). Then by Jennings [6, theorem 

3.3.7], the second dimension subgroup of G' is trivial, so by [6, lemma 3.3.4], 

w(FG')nFG = {(1 + X l ) . . . ( 1  + x n ) :  X l , . . . , z ~  �9 G '}FG for all n �9 N. In 

particular, w(FG') 3 FG = (G') + FG. But then 

[(FG)', (FG)'] c_ 
w(FG') FG] = w(IFG') 2 [FG,IFG] C_ co(FG')3FG C_ (C')+FG. | 
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LEMMA 1.5: Let G be a group that acts by element inversion on G' "~ Z2 x Z4, 
and suppose that Ca(G')' C_ ~(G~). Then FG is Lie centre-by-metabelian. 

Proof." Write G' -- (x, y} with x 2 = 1 = y4  and set C := CG(G'). Then 

]G: C I = 2, and C '  C_ (I)(G ~) = (y2} c Z(G), and ax = x, ~y = ya for all 

a c G \ C .  
Obviously (FG)' is spanned by all elements of the form [c,d] = cd + d(cd), 

[b, a] = ba + a(ba), or [a, c] = ac + ~(ac), with c, d E C, a, b E G \ C. Hence it is 

also spanned by all elements of the form c + dc, c + ac, or a + Ca, with c, d C C, 

a c G \ C .  
Consequently, (FG)" is spanned by all elements of the form 

(*) [c + dc, g + hg], [c + ~c, d + tad], [a + Ca, da + ~(da)], [c + ~c, da + ~(da)], 

with c, d, e E C, g, h E G, a E G \ C (note that  if a, a ~ E G \ C, then a ~ = da for 

some d C C). It suffices to show tha t  all elements of this form are central in FG. 

By Jennings [6, theorem 3.3.7], the series of dimension subgroups of G ~ is given 

as (x, y) __ (y2} _ 1. By [6, lemma 3.3.4], w(FG') 5 = 0, and w(FG') 4 -- F.  (G') +. 

Then 1.1 implies tha t  w(FG') 4 FG _C Z(FG).  

Recall tha t  (FG)'  C w(FG')FG. Note also tha t  1 + C'  C_ w(FG') 2, since C'  is 

contained in the second dimension subgroup of G ~. Hence (FCy C_ (1 + C ~) FC C 

w(FG~) 2 FG. We now check tha t  

[ c+  dc, g +  hg] _-- [(1 + (d,c))c,(1 + (h,g))g] 

= (1 + (d,c))(1 + (h,g))[c,g] e ~;(FG')4 FG, 

[c + ~c, d + ~d] = [(1 + ( a, c))c, (1 + (ea, d))d] 

= (1 + (a, c))(1 + (ea, d))[c,d] E w(FG')4FG, 

[c + ac, da + ~(da)] = [(1 + (a, c))c, (1 + (e, da))da] 

= (1 + (e, da)) ((1 + (a,c))cda + (1 + (a,c)-l)dac) 

= (1 + (e, da)) (1 + (a,c) + (1 + (a,c)-l)(a~c)(d,c)) cda 

= (1 + (e, da))(1 + (a,c))(1 + (d,c))cda �9 w(FG')4FG. 

Moreover, 

T :=[a + Ca, da + ~(da)] = [(1 + (c, a))a, (1 + (e, da))da] 

=(1 + (c,a))(1 + (e, da)-l)ada + (1 + (e, da))(1 + (c,a)-l)da 2 

=(a (a ,  d) + ~a)da 2, 

where a := (1 + (c,a))(1 + (e, da) -1) e w(FG') 2. 
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It remains to show that ~- is central in FG, or equivalently, that 7- 

commutes with all f E C, and with a. Recall that (FC)' c_ (1 + y2) FC, and that 

%(1 +y2 )  = t(1 -l-y 2) for all t �9 G'. Then check If, T] = (a(a,d) + ~a)[f, da 2] �9 
(a(a, d)+ aa) (FC)' C a((a, d ) + l ) ( l + y  2) FC C w(FG') 5 FG = 0. Finally, observe 

that % = ( a o ~ ( a , d ) +  ~2a)~da2=(aa(a,d)-l  +a) (a ,d )da2=T.  I 

Remark 1.6: Suppose that G is a group that has an abel|an subgroup A of in- 

dex 2. Then [5, lemma 1.3] provides us with an embedding of FG into Mat(2, YA) 

(the algebra of all 2 x 2-matrices over ~A). It is an easy exercise to show that 

Mat(2, R) is Lie centre-by-metabelian for any commutative ring R. Hence so is 

FG. This observation concludes the proof of the "if"-direction of Theorem 1. 

2. Groups of  nilpotence class 2 

We are now going to verify Theorem 1 for groups G of class 2. We will freely 

use the well-known properties of such groups, such as (ab, c) = (a, c)(b, c) for all 

a,b, c E G, or G ' =  ((gi,gj): 1 <_ i < j <_ n) i f G  = (gl , . . . ,gn)-  

Remark 2.1: Let G be a group of class 2. Following A. Shalev [11], we set 

S~ := {a E G: (a,b) = x for some b e G} 

for x C G'. If (a,b) = x, and n , m , i , j  C Z, then (anbm,aib j) = x nj-r~i. I f n ,  m 

are co-prime, then anb m E S~ (similarly bma n E S~). Consequently S~ = S~ -t = 

S~-1. (But note that  the example G = D8 shows that S~ need not be a subgroup 

of G.) 
We will mainly use the following properties of Sx: 

( l + x ) S x  c_ [Sx, S~], and ( l + z ) 3 S x  c_ (FG)". 

To see this, let b E Sx, and choose an a E G with x = (b,a -1) = Ca, b). Then 

(1 + x)b = b + (a, b)b = b + aba -1 = [a -1, ab] 6 [S~, S~]. Apply this to obtain 

(FG)" _D [(1 + x)S , ,  (1 + x)S~] = (1 +x)2[S~,S~] D_ (1 + x)3Sx. 

LEMMA 2.2: Let G be a group of class 2 such that FG is Lie centre-by-metabelian. 

/ f G  is generated by two elements, then IG'I I 4. 

Proof: We write G = (g,h/. Then G' = (x/, where x := (g,h). By 2.1, 

(1 + x)4g e (1 + x)4S~ C [(1 + x)3S~,S~] C_ [(FG)",FG] = 0. Hence 0 = 

(1 + x )  4 -- 1 + x  4, and x 4 --- 1. | 



56 R. ROSSMANITH Isr. J. Math. 

LEMMA 2.3: Let G be a group of dass 2 such that NG is Lie centre-by-metabelian. 

If  I(x}I _> 4 for s o m e x  E G', then {y E G': Sx ASy  r O} C_ (S~,G) c_ (x). 

Proo~ It suffices to show the latter inclusion, since the former follows directly 

from the definition of Sy. W.l.o.g., suppose that Sx ~ 0, and let a E S~, g E 

G. Then (x)+(1 + (a,g)) = (1 + x)3[a,g](ga) -1 E (1 + x)3[S~,FG](ga) -1 = 

[(1 + x)3Sx,FG](ga) -1 C [(FG)",FG](ga) -1 = 0, and thus (a,g) E (x). I 

LEMMA 2.4: Let G be a group of class 2. It" FG is Lie centre-by-metabelian, 

then G ~ is an elementary abelian 2-group, or G' ~ Z4. 

Proo~ By considering the two-generator subgroups of G, we have (g,h) 4 -- 1 

for all g, h E G by 2.2. If exp(G t) = 2 we are done. 

Otherwise, there is a commutator of order 4 in G, say x = (a, b). Let y = (e, d) 

be an arbitrary commutator in G. By 2.3, we know that (a, b), (a, d), (c, b) E (x}, 

so there is a k E {0, 1,2,3} such that (ac, bd) = (a,b)(a,d)(c,b)(e,d) = xky. Now 

consider (ac, b) = (a, b)(c, b) = x(c, b), and distinguish the following cases: 

CASE 1: (c,b) = 1. Then (de, b) = x, hence ac E S~ ClS,~y, and xky E (x) by 

2.3. 

CASE 2: ( c , b ) = x .  T h e n c E S ~ n S y a n d y E ( x } .  

CASE 3: (c,b) = x 2. Then (b, ac) = (x(c,b)) -1 = x, so ae E S~A S~k y  and 

zky  E (x). 

CASE 4: ( c , b ) = x  3. Then (b, c) = x and c E S,  MSy, h e n c e y E ( x ) .  

In any case, we have y E (x). Therefore G' = (z) - Z4. I 

Remark 2.5: The preceding lemma already comes very close to our goal in this 

section. All which remains to be faced are groups G with elementary abelian, 

central commutator  subgroups G t of (2-)rank greater than 3. We have to show 

that  if FG is Lie centre-by-metabelian, then G contains an abelian subgroup A 

of index 2. 

So suppose that  G is a counterexample, and A is a maximal abelian subgroup 

of G (the existence of A is guaranteed by Zorn's lemma). To make the proofs 

of the following lemmata work, let us agree upon choosing A in such a way 

that  [A : Z(G)[ > 2, if at all possible. In other words, we may assume that if 

[A: Z(G)[ < 2, then [B: Z(G)[ < 2 for all maximal abelian subgroups B of G. 

Then FG is Lie centre-by-metabelian, and ]G: A] > 2, and ]G'] > 16, and 

exp(G') = 2, and G' C_ Z(G)  c_ A (in particular A 2:1 G), and CG(A) = A (in 
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particular A > Z(G)).  Let g, h �9 G. Then (g2, h) = (g, h) 2 = 1; i.e. all squares 

are central in G. Therefore G/Z(G)  and G/A are elementary abelian 2-groups. 

Hence IG : A I >_ 4. 
We divide our examinat ion of G into four cases (Lemmata  2.6-2.9), depending 

on the index of (G, A) in G'. In each case, we will show tha t  FG is not Lie 

centre-by-metabelian,  in contradiction to our assumption. 

LEMMA 2.6: Let G and A be as in 2.5, and suppose that ]G' : (G, A) I _> 8. Then 
FG is not Lie centre-by-metabelian. 

Proof: Suppose, for contradiction, tha t  FG is Lie centre-by-metabelian. 

For G := G/(G, A), we have exp(G') = 2, and [G'[ > 8. 

Let us at  first assume tha t  there are ~, t, ~, ~ C G with ] (~, t, fi, ~/' ] >- 8; w.l.o.g. 

(~,t~ ~ 1. If (fi,�9 E ((~,t-)}, then there are elements t5 E {$,t-}, ~ C {~,~} 

with (/5,q) ~ (($,t~), w.l.o.g./3 = $, ~ = ft. Then ($,t, fi, ~) = ($,t, fi, $~) and 

I(($,t-),(fi,$~))[ = 4 since ( f i , $ ~ ) =  (fi, s ) ( ~ , V ) � 9  (~,s)(($,t-)} r ((~,t~). So by 

replacing V by $~ if necessary, we may assume tha t  I((~,t-), (~,V)) I = 4. Since 

[ (5, [, fi, V)'] ~ 8, there must be/3 �9 {$, t-}, ~ �9 {fi, V} with (/3, q) r ((~, t-), (~, ~)), 

w.l.o.g./3 = $, q =  fi; i.e. [((~,t-), (fi,9), ($,fi)}] = 8. 

We move back into G by choosing preimages s, t, u, v �9 G of ~, t, 5, 9, respec- 

tively. We set x := (s,t) ,  y := (u,v),  z := (s,u),  then [(x,y,z}[ = 8, and 

(x ,y ,z}  M (G,A) = 1. Moreover, su ~ Ca(A) = A, for otherwise z = (u,s) = 
(s, su) �9 (G, A). Consequently there is an a e A with w := (su, a) r 1. Because 

w �9 (G,A),  we have [(x,y,z,w)] = 16. 

But  then (1 + x)(1 + y)(1 + z)su = (1 + x)(1 + y)[s, u] = [(1 + x)s, (1 + y)u] �9 
[(1 + x)Sx,(1 + y)S~] C (FG)",  and 0 # (1 + x)(1 + y)(1 + z)(1 + w)asu = 
(1 + x)(1 + y)(1 + z)[su, a] = [(1 + x)(1 + y)(1 + z)su, a] �9 [(FG)", FG] = 0. This 

means tha t  our assumption is rubbish, and we may conclude: 

(*) I f / ~  < G is generated by four elements, then I/~'1 _~ 4. 

We will reduce this conclusion to absurdum. For simplicity, and since we will 

not switch back to G anymore, we will omit the bars - over the elements of G in 

the following. 

Choose s , t , u , v  �9 G with [(x,y)] = 4 for x :-- (s,t), y := (u,v). By (*), 

(s, t, u, v)' = (x, y}. In the case tha t  (s,t ,  u)'  = (x) = (s, t, v)' and (s, u, v)' = 

(y} = (t ,u,v) '  we obtain ( (s , t ) , (u ,v})  C_ (x) M (y) = 1, and it follows tha t  

(su, t) = (s, t)  = x, (su, v) = (u,v) = y, hence (su, t ,v)'  = (x,y). In any 

case, there are three elements s, t, u �9 G such tha t  I(x, y)] = 4 with x := (s, t), 

y := (s, u). 
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Because of IG' I > 8, there are g,h E G with z := (g,h) ~ ix, y). 
(*) then implies tha t  

<s,t,~,g>' = ix, y> = <s,t,~,h>', 
(s,t,g,h>'= <x,z>, 
<s,~,g,h>' = <y,~> ; 

(<g, h},  s) C_ (x, y> N (x, z> ~ <y, z> = 1, 

((g, h},  u) C_ <x, y) ~ (y, z) = (y>, 

((g, h i , t )  C (x,y} M (x,z}  = (x>. 

Isr. J. Math. 

Conclusion 

LEMMA 2.7: Let G and A be as in 2.5, and suppose that I G'  : (G,A)I = 4. Then 
FG is not Lie centre-by-metabelian. 

Proof: Assume tha t  FG is Lie centre-by-metabelian. 

Set G :-- G/(G,A) ,  then exp(G') = 2 and I ~']  = 4. As in the proof of 2.6, 
there are ~, t, ~ E G with G' = <~, t, ~>' = <2, y), where 2 := (~, t-), ~ := (g, ~). If 

(t, ~) = �9 then (t, ~ )  = 22 = 1 and (~, ~ )  = ~; if (t, ~) = 9 then (~t, ~) = 92 = 1 

and (~, St-) = 2; and if (t, fi) = 2~ then (St, $fi) = 1 and ($, St~ = 2 and ($, $fi) = Y. 

Thus, by replacing t (respectively fi) by J (respectively $fi) if necessary, we may 

assume tha t  (t-, ~) = 1. 

Let now s, t, u, x, y E G be suitable preimages of $, t-, fi, 2, Y, respectively, such 

tha t  x = (s , t)  and y = (s,u).  Certainly (t ,u) E (G,A). If ( t ,u) = 1, let 

a E A \ CA (t) # 0, then (t, ua) ~ 1. Thus, by replacing u by ua if necessary, we 

may assume tha t  w := (t, u) E (G, A) \ {1}. Then (s, tu) = xy and 

a :-= (1 + x)(1 + y)(1 + w)ttu = (1 + xy)(1 + x)(1 + w)ttu 

-- (1 + xy)(1 + x)[tu, t] = [(1 + xy)tu, (1 + x)t] 

E [(1 + xy)Sxy, (1 + x)Sx] C (FG)". 

If (u,A) ~ (w}, and z := (u,b) ~ <w) with b E A, then I<x,y,z,w}l = 16 and 

therefore 

0 = [b, or] = t2(1 + x)(1 + y)(1 + w)[b,u] = t~(1 + x)(1 + y)(1 + w)(1 + z)bu r O, 

If ((g, h>, u) = {y> and ((g, h>, t) = <x), we would have (g, h, u, t>' _D {x, y, z> in 

contradiction to (*). So assume w.l.o.g, that  ((g,h> , t)  = 1. If (g,u) = y and 

(h,u)  = y, then (gh, u) = y2 = 1. Moreover, z = (g,h) = (h,g) = (gh, g) = 
(g, gh) = (h, gh) = (gh, h). Thus, by permuting {g, h, gh} in a suitable way, we 

may assume tha t  (g,u) = 1. But then (gs, t) = (s,t) = x, (gs, u) = (s,u) = y, 
(gs, h) = (g, h) = z, and (gs, t, u, h}' D_ ix, y, z} in contradiction to (*). I 
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contradiction (recall that all squares are central in G, cf. 2.5). Hence (u, A) C_ (w>. 

Similarly one shows that (t,A) c_ <w>; this implies (<t,u> ,A) = ( t ,A)(u,A)  c_ 

Now ]G'] _> 16 implies ](G,A)I _> 4, so there is an element g E G with (g,A) ~: 
(w). The map a: A --+ A, a ~-+ (g, a), is a group homomorphism with image (g, A), 

hence a-l(<w}) < A. Consequently A ~ CA(t) U a-l(<w>), so there exists an 

a E A such that (t, a) ~ 1 (i.e. w = (t, a) = (ta, a)) and z := (g, a) E (G, A) \ (w>. 

Set 2 := (s, ta) - -x(s ,a)  E x(G,A); then ](2, y,z,w>] = 16. By 2.1, 

(1 + y)(1 + w)(1 + 2)sta = (1 + y)(1 + w)[s,ta] = [(1 + y)s, (1 + w)ta] E (FG)", 

hence 0 = [g, (1 + y)(1 + w)(1 + 2)sta] = (1 + y)(1 + w)(1 + 2)(1 + (sta, g))gsta. 
This implies (st, g)z = (sta, g) E <2,y,w>, i.e. (st, g) -- z (mod (2, y,w>). Let 

:= (as, ta) = w~2 - 2 (mod (w>), and ~ := (as, u) = y(a,u) - y (mod <w>). 

We obtain 

(1 + w)(1 + y)(1 + ~)ta2s -- (1 + w)(1 + ~)(1 + ~)ta. as 

= [(1 + w)ta, (1 + ~l)as] 

E (FG)", which leads to the contradiction 0 = [g, (1 + w)(1 + y)(1 + 2)ta2s] = 
a2(1 + w)(1 + y)(1 + 2)(1 + (st, g))gst -- a2(1 + w)(1 + y)(1 + 5)(1 + z)gst ~ O. 
] 

LEMMA 2.8: Let G and A be as in 2.5, and suppose that IG' : (G, A)I = 2. Then 
]FG is not Lie centre-by-metabelian. 

Proof: Assume that FG is Lie centre-by-metabelian. We have ](G, A)[ k 8. 
Suppose at first that there are s, t E G with (s, t) ~ (G, A) and I({s, t) ,  A)I k 8. 

Then argue as follows: 
(*) 

Ya, b E A: (1 + (s,a))(1 + (t,b))(1 + (s,t))ts = [(1 + (t,b))t, (1 + (s,a))s] E (FG)" 

Va, b,c E A: 0 = [c, (1 + (s,a))(1 + (t, b))(1 + (s,t))ts] 

Va, b,c E A: 0 = (1 + (s,a))(1 + (t,b))(1 + (s,t))(1 + (ts, c))cts 

~ Va, b, cE  A: [((s,a),(t,b),(ts, c),(s,t))] <_ 8 

Va, b, c E A: I((s, a), (t, b), (ts, c)} I <_ 4. 

Since (Is, t ) ,A )  = (s ,A)( t ,A) ,  assume w.l.o.g. I(s,A)] _> 4. Choose a,b E 
A such that (t, b) r 1 and (s,a) q~ ((t, b)). Then (*) implies that (ts, A) C 

((s, a), (t, b)}. Hence (s, A) ~ ((s, a), (t, b)) or (t, A) ~ ((s, a), (t, b)). 
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If (s, A) A (t, A) = 1, then ((s, t / ,  A) -- (s, A)(t, A) = (s, A) • (t, A). Let c E A, 
then (s,c)(t,c) = (st, c) E ((s,a), (t,b)}, hence (s,c) E ((s,a)) and (t,c) E ((t,b)). 
But this implies that ((s, t}, A) = (s, A)(t, A) C_ ((s, a), (t, b)), contradiction. 

So we may assume that (s, A) N (t, A) :/: 1. Then there are a, b, d E A with 

1 7~ (t,b) = (s,d) and (s,a) ~ ((t,b)), and (*) implies again that (ts, A) c 
((s, a), (t, b)) -- ((s, a), (s, d)) C_ (s, A). It follows that ((s, t}, A) = (s, A)(st, A) = 
(s, A). Conclusion (*) then implies that [((s, a), (t, b), (s,c)) I _< 4 for all a, b, c E 

A, i.e. (t, A) is contained in all subgroups of (s, A) of order 4. The intersection 
of all those subgroups is trivial, because I(s, A)[ _> 8, but (t, A) cannot be trivial, 
because t ~ A = Co(A). 

This shows that [((s,t),A)[ _< 4 for all s, t  E G with (s,t) ~ (G,A). 

Assume now that there are s, t  E G with z := (s,t) ~ (G,A) and [((s,t),A)[ --- 

4. Then there is an element g E G with (g, A) ~ ((s, t ) ,  A). 

If [(s,A)[ = 4, then ( ( s , t ) ,A)  = (s,A). This implies [((s,g),A)[ > 8 and 

I((s, tg} ,A)[ > 8, hence (s,g) E (G,A) and (s, tg) E (G,A) by tile above. But 

then also (s, t) = (s, tg)(s, g) E (G, A), contradiction. 

Consequently I(s,A)l = 2, and similarly [(t,A)[ = 2, say (s,A) -- (x} and 

(t,A) = (y). Let a E A. Then [(x,y,z)l = 8, s E Sx, ta E Sy, (s, ta) = z(s,a) - z 
(mod (x)) and 

( l+x) ( l+y) ( l+z ) tas  = ( l+x) ( l+y) ( l+(s ,  ta))tas = [(l+y)ta, (l+x)s] E (FG)". 

It follows that 

0--  [ g , ( l + x ) ( l + y ) ( l + z ) t a s ]  = ( l + x ) ( l + y ) ( l + z ) ( l + ( g , a ) ( g ,  st))tasg, 

i.e. (g, st) E (g ,a)(x ,y ,z}  for all a E A. But this is ridiculous since 

NaeA(g, a) (x, y, z) = 0 because of (g, A) ~ (x, y, z}. 
This shows that [((s,t} ,A)[ = 2 for all s, t  E G with (s,t) ~ (G,A).  On the 

other hand, there surely are s , t  E G with (s,t) ~ (G, A), since G' % (G, A). 

Then (s,A) -= ( (s , t ) ,A)  = (t,A). Let g E G with (g,A) ~ ( (s , t ) ,A) ,  then 
[((g,t),A)[ _> 4 and I((gs, t),A)] _> 4. This implies (g,t) E (G,A) and (gs, t) E 
(G,A), which leads to the contradiction (s,t) = (gs, t)(g,t) E (G,A). I 

LEMMA 2.9: Let G and A be as in 2.5, and suppose that [G' : (G, A)[ = 1. Then 
FG is not Lie centre-by-metabelian. 

Proof: Assume that FG is Lie centre-by-metabelian. Since G' = (G,A), we 

have I(G,A)I > 16. 
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Let  us at  first make the addit ional  assumption tha t  I(s, A)[ = 2 for all s E G \ A .  
We claim tha t  in this case (r, s) E (r, A) (s, A) for all r, s E G \ A with (r, A) 

(s ,A).  If not,  then there  are r , s  E G \ A  such tha t  I ( x , y , z / ]  = 8, where 

(r,A) = (x), (s ,A) = (y), and z := (r ,s) .  Since A ~ CA(r) UCA(S), there  is an 

a E A with x = (r, a), y = (s, a). By hypothesis,  I(G, A)] > 16, hence there  are 

t E G, c E A with w := (t, c) ~ (x, y, z). For any d E A, we then have 

and 

a := [[s, dr], [s, a]] = [(1 + (s, dr))drs, (1 + (s, a))as] 

= (1 + (s, dr))(1 + (s,a))[drs, as] 

= (1 + (s, dr))(1 + (s, a))(1 + (drs, as))asdrs 

= (1 + (s, d)(s, r))(1 + y)(1 + (ds, as)(r, a)(r, s))asdrs 

c(y) ~(y) 
= (1 + z)(1 + y)(1 + xz)asdrs = (1 + z)(1 + y)(1 + x)asdrs, 

0 -- It, a] = (1 + z)(1 + y)(1 + x)(1 + (t, asdrs))asdrst 

= (1 + z)(1 + y)(1 + x)(1 + (t, ar)(t, d))asdrst. 

This  implies tha t  (t, ar) E (t, d)(x, y, z) for all d E A; in par t icular  we have 

(t, ar) E (t, c) (x, y, z) M (t, 1) (x, y, z} = w (x, y, z / M (x, y, z) = 0. This contradic- 

t ion proves our claim. 

We claim next  tha t  there  are r, s E G \ A with CA(r) ~ CA(S). Otherwise we 

have CA(r) -= CA(S) for all r, s E G \ A, hence CA(S) = Z (G)  for all s E G \ A. 

Let  s E G \ A, and consider the homomorphism A --4 A, a ~4 (s, a). Its image is 

(s, A) and its kernel CA(S) = Z(G) ;  in part icular  A/Z(G) ~ (s, A), and therefore 

]A : ~g(G)] = 2. By the choice of A, this implies IB : Z(G)I  < 2 for all maximal  

abelian subgroups B of G (cf. 2.5). Let r E G \ A with (r, A) ~ (s, A), then 

(r, s) E (r, A)(s, A) by the previous claim. Since 

(r,A)(s,A) = (r ,A) U (s,A) U (rs, A) 

(for order reasons) and (r ,s)  = (s , r )  = (s, rs)  = (rs, s) = (r, rs)  = (rs, r), 
we may permute  {r, s, rs} in a suitable way and assume tha t  (r, s) E (r, A), 

i.e. (r, s) = (r, a) for some a E A. Then  (r, sa) = 1, so we may replace s by 

sa and assume (r ,s)  = 1. Certainly (r,A) ~ (s ,A) ~ rZ(G) ~ sZ(G) 
IB : Z(G)I > 2, where B := (Z(G),r,s); but  then B is abelian in contradict ion 

to a previous s ta tement .  

Now let r,s E G \ n with CA(r) ~ CA(S). If ( r , n )  = (s ,A),  there  is an 

element t E G \ A with ( r ,A)  ~ (t,A). If CA(r) = CA(t), then CA(r) # CA(st) 
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and (r, A) ~ (st, A). In any case, there are r, s E G \ A with (r, A) ~ (s, A) and 

CA(r) # CA(S), w.l.o.g. CA(r) ~ CA(S). We choose such r, s and write (r, A) = (x), 

(s, A) = (y). 

Since [(G,A)I > 16, we may  choose t ,u E G \ A such tha t  I (x, y ,z ,  w) [ = 16 

with (t,A) = (z} and (u,A) = (w}. By the first claim, (su, t) E (su, A)( t ,A)  = 
(yw, z}, so there  is an e E A such tha t  (su, re) = (su, t)(su, e) E (z). We replace 

t by te and henceforth assume tha t  (su, t) C (z}. Let now a ,b  C A such tha t  

(t, b) -- z and (su, ba) = wy. For e, d C A, we then have 

a := [[cs, du], [at, b]] = [(1 + (cs, du))ducs, (1 + (at, b))bat] 

= (1 + (cs, du))(1 + (at, b))[ducs, bat] 

= (1 + (cs, du))(1 + z)(1 + (ducs, ba) (ducs, t))batducs 
y J ~  

=~y  c(z) 

= (1 + (cs, du))(1 + z)(1 + wy)batducs, 

and 0 = Jr, a](batduesr) -1 = (1 + (es, du))(1 + z)(1 + wy)(1 + (r, batducs)) = 
(1 + (u, c)(s, d)(s, u))(1 + z)(1 + wy)(1 + (r, batsu)(r, dc)). This  implies lEe,d] < 

16 with Ec,d := (z, wy,(u,c)(s ,d)(s ,u) ,(r ,  batsu)(r, dc)) for all c,d E A. Now 

(s, u) E (w, y), so we have (s, u) -- 1 or (s, u) ~ w (mod (wy, z)). Fur thermore ,  

(r, batsu) = (r, ab)(r, stu) C (x,wyz),  hence (r, batsu) =- 1 or (r, batsu) - x 
(mod (wy, z)). Consider the following cases (all congruences modulo  (wy, z)): 

CASE 1: ( s ,u)  -- 1 and (r, batsu) ~ 1. Set c := 1 and choose 

d e A \ (CA(S) UCA(r)) ~ O, 

then  Er = (z, wy, y, x). 

CASE 2: (S, U) ~ 1 and (r, batsu) =- x. Set c := 1 and choose 

d E CA(r) \ CA(s) ~ 0, 

then  E~,d = (z, wy, y, x). 

CASE 3: (S,U) -- w and (r, batsu) - 1. C h o o s e c E  A \ (CA(U) UCA(r)) ~ 
and d e CA(r) \ CA(s) r 0, then Er = (z, wy, w2y, x}. 

CASE 4: (S, U) = W and (r, batsu) =- x. Set c = d = 1, then Ec,d ---- (z, wy, w, x). 

In  any  case we obta in  Ec,d = (x ,y , z ,w) ,  which leads to the contradic t ion 

IEc,dl -~ 16. This  shows tha t  our addit ional  assumpt ion  at  the beginning of the  

proof  was wrong,  so there  is an element s E G such tha t  I(s, A)I >_ 4: 



I(s, A) I >_ 4. Using similar 

t E G with (t ,A) ~ (s,A) 

z := (t,b) ~t (s ,A),  and 

i(x,y,z)l = s .  
Let d E A be arbitrary, 
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Assume next tha t  there is an element s e G such that  even I(s, A)I > 16. Since 

]G : A] _> 4, there is a residue class tA (with t C G) distinct from both sA and 

A. 
If there is an element c C A with 1 ~ (s, c) =fl (t, c) ~ 1, there are a, b E A with 

[((s, a), (s, b), (s, c), (t, c)) I = 16 (because of I(s, A)I > 16). Then (s, c) = (s, sc), 
and (sc, b) = (s, b), and 2.1 imply that  

a := (1 + (s, a))(1 + (s, b))(1 + (s, c))s.sc = [(1 + (s, a))s, (1 + (sc, b))sc] e (FG)",  

and [FG, (FG)"] ~ It, a] = s2( l+(s ,  a ) ) ( l+ ( s ,  b))( l+(s ,  c))[t, c] = s2( l+(s ,  a ) ) ( l +  

(s, b))(1 + (s, c))(1 + (t, c))ct ~ O, contradiction. 

Therefore, we may assume tha t  

(,) V a ~ A ,  t E G \ ( A U s A ) : ( s , a ) ~ l ~ ( t , a ) ~ ( s , a ) = ( t , a ) .  

Let t E G \ (A U sA), a C A \ (CA(8) U CA(t)), then 1 ~- (s,a) = (t,a) by (*). 

Set Ba := {b e A: (s,b) ~ ((s,a))} r O. 
If there is a b e Ba with (t,b) = 1, then st E G \ (A UsA)  and (st, ab) = 

(s,a)(t,a)(s,b) = (s,a)2(s,b) ~ 1 and (s, ab) = (s,a)(s,b) ~ t, but  (s, ab) 
(s, ab)(t,a) = (s, ab)(t, ab) = (st, ab) in contradiction to (*). Consequently 

(t, b) ~ 1, i.e. (t, b) = (s, b), for all b E Ba. 
Let now 5 C A with 1 # (s,5) ~ (s,a), then a E Ba and 5 E B~; in fact 

A \ CA(S) = B~ U Ba. Much as above it follows tha t  (t, b) = (s, b) for all b C Ba. 

Together we obtain (t, b) = (s, b) for all b C A\CA(S) .  But then also ](t, A)I >__ 16, 

so by symmetry,  we find tha t  (t, b) = (s, b) for all b E A \ CA(t). It follows tha t  

(t, b) = (s, b) for all b E A, hence (st -1, b) = 1 for all b C A, so st -1 E Ca(A) = A, 
in contradiction to tA ~ sA. 

This shows tha t  I(s,A)[ _< 8 for all s E G, and there does exist an s E G with 
methods as earlier in the proof, we obtain an element 

< (G, A) = G', an element b E A with y :=  (s, b) ~ 1, 

an element a E A with x := (s,a) ~ (y); in short: 

and consider 

a := ( l+x) ( l+z ) ( l+y)ds .b  = [(l+x)ds, (l+z)b] e [ ( l+x)Sx,  ( l+z)S~] C (FG)".  

If r C G with (r, A) ~ (x, y, z), then 

0 = Jr, a] = (1 + x)(1 + z)(1 + y)(1 + (r, dsb))dsbr 

= (1 + x)(1 + z)(1 + y)(1 + (r, d)(r, sb))dsbr. 
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This implies (r, sb) E (r, d) (x, y, z) for all d C A, but AdEA(r,d)(x,y,z) = O, 
contradiction. | 

3. Elementary  abelian commutator  subgroups  

This section deals with groups G such tha t  exp(G') = 2. We will show tha t  

FG Lie centre-by-metabelian implies G ~ C_ Z(G),  so we may apply the results of 

section 2. 

LEMMA 3.1: Let E be a normal subgroup of exponent 2 of the group G, and 

suppose that FG is Lie centre-by-metabelian. I f  we set C := Cc( E), then: 

(i) The element orders in G / C  are 1, 2, 3, or 4. 

(ii) I f  aC E G / C  has order 3, then E = (a,E)  • CE(a), and I(a,E)] = 4. 

(iii) There is no subgroup of order 9 in G/C.  

(iv) I f  G / C  is abelian, then IG/CI = 3, or exp(G/C)  I 4. 

Proos (i) Let x E E,  a E G. Observe tha t  (x, a) = (a, x) = %x. Then 

a := [x + ~x, a + Xa] = [(1 + axx)x, (1 + axx)a] 

= (1 + axx)2xa+ (1 + axx)(1 + ~ x a x ) % a  

= (1 + %x)(1 + a~x%)%a. 

Since (1 + a~x %)( % + a~x) = 0, we furthermore obtain 

0 = [a, a]a -2 -- (1 + a2x %)(1 + a3x ~2x) ~2x + (1 + %x)(1 + a2x aT,) ax 

= (l + a2xax)(a2x~- a3x~- axe-x) = (I Jr- a2xax)(x~- a3x) 

= (1 + ax)(1 + a X) X. 

Expanding the parenthesis yields 1 E { ~ x % ,  ~3 XX, a3x a2x axx}. Now if 1 = 

~2x%, then x = %, if 1 = ~3 a3 xx, then x = x, and if 1 = ~3x~2x%x, then 
~3x = ~ a2X, i.e. ~ x  = ~ 3x a2x % -~ a2x %X a2x ax = X. 

(ii) We consider E as an F2[(aC)]-module. By Maschke [3, Satz 1.17.7], E is 

semisimple. There are two nonisomorphic simple F2 [(aC)]-modules: the trivial 

one, and a module of dimension 2, on which (aC} acts by cyclic permutat ion of 

the three nontrivial elements. 

ASSUMPTION: There are two distinct nontrivial simple submodules V, W con- 

tained in E. Then dim V = dim W = 2, and we may write V = (x, y), W = (z, w} 
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such that  ax = y, ~y = xy, az = w, ~ = wz. Then 

and 

[ [~ ,  a], [z, a]] =[(1 + (a, ~))xa, (1 + (a, z))za] = [(1 + ~V)xa, (1 + wz)za] 

=(1 + xy)(1 + z)xwa 2 + (1 + wz)(1 + x)zya 2 

= (xw + xwz + wyz + yz + xyz + xyw) a 2, 

o = Ix, .a2]a-2x = ~[~, a2]a-2x 

=- ~(1 + (x, a2)) = o(1 + y) = z(1 + w)(1 + x)(1 + y), 

contradiction. 

This shows that there is precisely one nontrivial simple submodule V of E. 

Then E = V @ CE(a), and (a, E) = (a, V) -- V has dimension 2, i.e. order 4. 

(iii) Suppose that U is a subgroup of order 9 in G/C. Since G/C does not 

contain elements of order 9 by (i), U is elementary abelian. 

We consider E as F2 [U]-module. Again, we may write E as a sum of simple 

submodules. By [2, theorem 3.2.2], none of these simple modules is faithful (in 

the sense that the corresponding linear representation of U is faithful), since U 

is abelian but  noncyclic. At least one of the simple submodules is nontrivial, say 

V. The kernel of V in U must then have order 3, so we write Cu(V) = (bC). 

Take an element a E G such that U = (aC, bC). Then aC acts nontrivially on 

V. By (ii), aC acts trivially on all simple submodules W ~ V of E. 

On the other hand, bC acts nontrivially on E, i.e. nontrivially on some simple 

submodule W r V of E. But then abC is an element of order 3 in G/C which 

acts nontrivially on both components of V • W. This contradicts (ii). 

(iv) By (i), the element orders in G/C are bounded by 4. If G/C contains 

no element of order 3, then exp(G/C) I 4. So suppose that G/C does contain 

an element of order 3. If it also contains an element of order 2, then there also 

is an element of order 6 since G/C is abelian, contradiction. Hence G/C is an 

elementary abelian 3-group. Since there cannot be a subgroup of order 9 by (iii), 

G/C must have order 3. | 

Remark 3.2: Let G be a group with Z2 • Z2 • Z2 ~ G' ~ Z(G). Then G' C C := 

Cc(G') < G, so G/C is a nontrivial abelian group. We consider G' as an F2-vector 

space and choose a basis x, y, z. The conjugation action of G on G' produces a 

representation G -~ GL(3, 2) with kernel C. Below we list representatives of all 

the abelian subgroup conjugacy classes of GL(3, 2) (cf. [10]), and by changing 

the basis if necessary, we may assume that G is mapped onto one of these: 
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/ 0 0 1 \ \  
R:---- 1 1 0 1 | )  ~ Z3, 

\ o l o ] /  
/ 0 1 0 \ \  

T := 1 1 0 0 1 )  -~ Z2, 
\ o o l / /  

/ [ 0 0 1 \  [ooi\> 
V := ( | 0 1 o |  | 1 1 1 |  N \ \ 1 0 0 ] '  ~-V2, \ 1 o 0 /  

( / 0 0 1 ) )  
S := | 100  ~ Z3, 

\011 
( ( ~ 1 1 ) )  

11 ~ Z 4 ,  U : :  10 
/ 0 0 1 \  / 0 1 1 \ \  

W : :  | 0 1 0 / , | 0 1 0 / )  ~ V  4. 
\ 1 0 0 /  \ 1 1 0 ] /  

In any of these cases, FG is not Lie centre-by-metabel ian.  This  is clear by 3.1 in 

the  case t ha t  G is m a p p e d  onto S. The  other  cases are handled by 3.3-3.8. 

LEMMA 3.3: Let the notation be as in 3.2, and assume that G is mapped onto R. 
Then FG is not Lie centre-by-metabelian. 

Proof: We assume otherwise. If  we write G / C  -- (aC), we have % = y, Oy = z, 

% = x. For all c ,d  e C, we have a := [x+ ax, ca+d(ca)] = [x+y,  (l+(d,  ca))ca] = 

(1 + (d, ca))c Ix + y, a] = (1 + (d, ca))c (x + y + y + z)a = (1 + (d, ca))(x + z)ca, 
and 

(*) 0 = [a, a] a - 2 c - l x  --- (1 + (d, ca))(x + z)x + (1 + ~(d, ca))(y + x) ~cc-lx  

-- (1 + (ca, d))(1 + xz) + (1 + ~(ca, d))(1 + xy)(a, c). 

Sett ing c = 1 and expanding parentheses,  we obta in  

0 ---- (a, d) + xz  + (a, d)xz + a(a, d) -~ xy -~ a(a, d)xy. 

If  (a, d) ~ (xy, yz) <~ G, then the project ion of the right hand  side onto F[(xy,  yz)] 
w.r.t,  the vector  space decomposi t ion FG = ~ g e G  Fg is xz  + xy ~ O, contradic-  

tion. This  shows tha t  (a, d) e (xy, yz) for all d e C, i.e. (a, C) C_ (zy, yz). 

Since C' C Z(G) A G' = (xyz) and (a, C)C' = G' ~_ (xy, yz), we have C '  = 

(xyz). Let c, d E C with (c, d) = xyz. Then  (*) yields 

0 = (1 + xyz(a, d))(1 + xz) + (1 + xyz  a(a, d))(1 + xy)(a, c), 

but  the  project ion of the right hand  side onto F[(xy, yz)] is 

(1 + xz) + (1 § xy)(a, c) = 1 + xz  + (a, c) -t- xy(a, c), 

which cannot  vanish, for (a,c) C (xy, yz) = {1, xy, yz, xz}.  I 



Vol. 115, 2000 LIE CENTRE-BY-METABELIAN GROUP ALGEBRAS, I 67 

LEMMA 3.4: Let the notation be as in 3.2, and assume that  G is mapped onto U. 
Then FG is not Lie centre-by-metabelian. 

Proob We write G/C = (aC}. Then ~x = yz, ~y = xyz, ~z = zy. By 

the introductory remarks of this paper, we have C' C_ G' N Z(G) = (xz} and 

G' = (a, C)C'. Since G' ~: (y, xz}, also (a, C) ~ (y, xz}. 
So let c E C such tha t  (a, c) E G' \ (y, xz}. Then 

[x + ~x, a + Ca] = [x + ~x, (1 + (a, c))a] = (1 + (a, c)) Ix + ax, a] 

= (1 + (a,c))(x + ~x)a = (1 + (a, C))(1 +xz )xa  =: a, 

and 
[a, a]a-2x = (1 + xz) [a, (1 + (a, c))x] a - i x  

= (1 + xz) ((1 + (a, c))xa + (1 + a(a, c)) axa) a-lx 

= (1 + xz) (1 + (a, c) + yzx + a(a, c)yzx) 

= (1 + xz) (1 + (a, c) + y + ~(a, c)y). 

Since (a, c), ~(a, c) ~ (y, xz) ~_ G, the projection of the last term onto F[(y, xz}] 
is (1 + xz)(1 + y) r 0. Hence []FG, (FG)"] r 0. | 

LEMMA 3.5: Let the notation be as in 3.2, and assume that G is mapped onto V. 
Then FG is not  Lie centre-by-metabelian. 

Prod: We assume tha t  FG is Lie centre-by-metabelian. We write G/C = 
(aC, bC} with a ,b E G such tha t  % = z, ~y = y, az = x, and bx = yz, by = y, 
bz = xy. Then Cc,(a) = Co, (b) = G' N Z(G) = (y, xz}, and the lower central 

series of G is G t> (x, y, z} t> (y, xz I t> 1. Hence G has class 3. 

Let g, h E G. Then 

(g2h, hg) = 9~(h, hg)(g 2, hg) = (hg, h)(g 2, h) = h(g, h) g(g, h) . (g, h), 

and thus 

[[g, h],[g, gh]] 

= [(1 + (g, h))hg, (1 + (g, gh))g2h] = [(1 + (g, h))hg, (1 + g(g, h))g2h] 

= (1 + (g, h))(1 + h(g, h))hg" g2h -I- (1 -F g(g, h))(1 + h(g, h))g2h, hg 

= (1 + h(g, h)) ((1 + (g, h)) + (1 + g(g, h)) h(g, h) g(g, h)(g, h)) hgah 

= (1 + h(g, h)) (1 + (g, h) + (1 + g(g, h))(g, h)) hg3h 

= (1 + h(g, h))(1 + g(g, h)(g, h))hg3h 

= (1 + h(g,h))(1 + (g,g,h))hgah. 
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Now (g, hg3h) =- (g,h) h93(g,h) = (gh, g,h) = (g,g,h)(h,g,h),  since "~3(G) C 
Z(G), and h(g,h)(1 + (g,h)) --- h(g,h)(g,h)(1 + (g,h)) = (h,g,h)(1 + (g,h)). 

Hence 

0 = [g, [g, h], [g, gh]] = (1 + (g, g, h))[g, (1 + h(g, h))hg3h] 

= (1 + (g,g,h)) ((1 + h(g,h)) + (1 + gh(g,h))(h,g,h)) hg3hg 

(*) = (1 + (g,g,h)) (1 + h(g,h) + (h,g,h) + (gh, g,h)(g,h)(h,g,h))  hg3hg 

= (1 + (g,g,h))(1 + h(g,h) + h(g,h)(g,h) + (g,h)) hg3hg 

= (1 + (g,g,h))(1 + h(g,h))(1 + (g,h))hgahg 

--- (1 + (g,g,h))(1 + (h,g,h))(1 + (g,h))g4h 2. 

Let us assume that there exists an element c �9 C such that (a, bc) ~ Z(G). Then 

(a,a, bc) = xz and (bc, a, bc) = xyz. If we subst i tu teg  := a and h := bc in 
(*), we obtain the contradiction 0 = (1 + (a, a, bc))(1 + (bc, a, bc))(1 + (a, bc)) = 
(1 + xz)(1 + xyz)(1 + (a, bc)) = (G' M Z(G))+(1 + (a, bc)) ~ O. 

Consequently (a, bc) �9 Z(G) for all c �9 C; in particular (a, b), (a, b -1) �9 Z(G) 
since bC = b-lC.  It follows that (a,c) = (a,b-lbc) = (a,b-1)(a, bc) E Z(G) for 

all c �9 C, and similarly (a, ac), (a, abc) �9 Z(G). Since 

G = C U aC U bC U abC, 

we find that  (a, G) c_ Z(G). But then 

(a ,g - l ,h )  -- (a ,g- l ,h )  �9 1 .1  = (a ,g - l , h ) (g ,h - l , a ) (h ,a - l , g )  = 1 

for all g, h �9 G by Witt 's  identity, which shows that a acts trivially on G ~, 

contradiction. I 

LEMMA 3.6: Suppose that G is a group of class at most 3 such that G' and 
G/Cc(G') both have exponent 2, and I73(G)I ~ 2. If  FG is Lie centre-by- 
metabelian, then I((g,h), g(g,h), (g,k)) I < 4 for a11 g ,h ,k  �9 G. 

Proof: Since I~,3(G)I _< 2, we have (1 + ( f ,g ,h) ) ( i , j , k )  = (1 + ( f ,g,h)) ,  and 

thus (l +( f ,g ,h ) )k ( i , j )  = (l +( f ,g ,h) ) ( i , j ) ,  for all f , g , h , i , j , k  C G. Using this, 

an easy but lengthy calculation (similar to the ones above) shows that  under the 

given hypothesis, the following equation holds for all g, h, k E G (cf. [7]): 

0 = [g, g + kg, h + gh] = (1 + (g, h))(1 + g(g, h))(1 + (g, k))g2h. 

This, together with the remarks in the introduction of this paper, implies the 

claim. I 
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LEMMA 3.7: Let the notation be as in 3.2, and assume that G is mapped onto 
W.  Then FG is not Lie centre-by-metabelian. 

Proof: Assume that FG is a counterexample. 

We write G / C  = (aC, bC} with a,b E G such that ~x = z, oy = y, ~z = x, 

and bx = z, by = xyz,  bz = x. Then Cc, (a) = (y, xz), Co, (b) = (xy, yz!, and 

G' N Z(G) = (xz). The lower central series of G is G t> (x, y, z) ~_ (xz) D 1. 
By 3.6, 

(,) I((g,h), 9(g,h), (g,c)) I <_ 4. 

for all g, h E G, c E C. 

Note that the introductory remarks of this paper imply that 

(**) 
C' = ((a,b)) (a ,C)(b,C)C r 

= ((a, ab)) (a, C)(ab, C)C' 

= ((ab, b)) (ab, C)(b, C)C'. 

We already know that C' C_ G ' N  Z(G) = (xz}. We show now that  also 

(a, b) E (xz): 

ASSUMPTION: (a,b) E {x,z}. T h e n 4  > [((a,b),a(a,b),(a,c)}l = ](x,z(a,c))], 
and 4 > I((b,a), b(b,a),(b,c)}] = ](x,z,(b,c)}[ by (*). Therefore, (a,b), (a,c), 

(b, c) E (x, z} for all c E C. Together with (**), this implies G' C (x, z), contra- 

diction. 
! 

ASSUMPTION: (a,b) E {xy, yz}. Then we have 4 >__ I((a,b), a(a,b),(a,c))[ = 
](xy, yz, (a, c)}l, and 

4 > I( (ab, a), ~b(ab, a), (ab, c)} I = I(~(b, a), b(b, a), (ab, c)) I = I(xy, yz, (b, c)) I . 

Similarly as above, this implies G r c_ (xy, yz), contradiction. 

ASSUMPTION: (a,b) E {y, xyz} .  In this case, 4 >_ I((b,a), b(b,a), (b,c)) I = 

[(y, xyz ,  (b,c)/I, and 

4 >_ I((ab, a), ab(ab, a), (ab, c)} I = I(a(b,a), b(b,a), (ab, c)} I = I(y, xyz , (a ,c)} l .  

This produces the contradiction G' C (y, xyz  I. 
Hence (a, b) E {xz I, as desired. We show next that (b, d) E (xz) for all d E C: 
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ASSUMPTION: (b, d) E {x, z}. If c E C, then (d, c) E (xz), and 

4 > I((bd, b), bd(bd, b), (bd, e))l = lix, z, (b,c))[, 

and therefore (b, d) E (x, z). Moreover, 

4 > [((ad, b), ad(ad, b), (ad, c))[ = ](x, z, (a,c))], 

hence also (a, c) E (x, z). We arrive at the already familiar contradiction G' c 

(x,z). 

ASSUMPTION: (b,d) E {xy, yz}. We have 4 > I((ad, b), ad(ad, b), (ad, d)) l = 
](a(d,b)(a,b), (d,b)(a,b), (a,d))] = I(xY, yz, (a,d)) I. Hence (a,d) E (xy, yz). 
But then Witt 's  formula implies xz = (a,b,d) -- (b- l ,d-a ,a) (d ,a- l ,b  -1) = 
(b, d -1, a) = (b, a, d) = 1, contradiction. 

ASSUMPTION: (b, d) E {y, xyz}. If c E C, then 

4 > I((bd, b), b%d, b), (bd, c))l = I(y, xVz, (b,c))l, 

and 4 > ]((abd, b), abd(abd, b), (abd, c))] = I(Y, xyz, (ab, c))], hence (b, c), (ab, c) E 
(y, xyz). This produces the contradiction G' C (y, xyz). 

This shows that (b,d) E (xz) = G'M Z(G). Observe now that  by Witt 's  
formula, 1 = (b, a -1, d)(a, d -1, b)(d, b -1, a) = (b, a -1, d). Consequently (a, C) = 

(a -1, C) C_ CG, (b). But then (**) implies that G' C Ca, (b), contradiction. I 

LEMMA 3.8: Let the notation be as in 3.2, and assume that G is mapped onto 
T. Then FG is not Lie centre-by-metabelian. 

Proof: Let G satisfy the prerequisites of the lemma. Then IG/C[ = 2, i.e. 

G/C = (aC) for all a E G \ C. 
In a first step, we claim that there is an element a E G \ C such that (a, C) = 

G t . 

We assume otherwise and pick an arbitrary element a E G \ C. As usual, 

G' = (a, C)C' with normal subgroups (a, C) and C' of G. Since C' C_ Z(G) 
and G' ~: Z(G), there is an element e E C such that ~(a,c) -r (a,c). Let 

x := (a, c), y := ~(a, c). Then (a, C) = (x, y) for order reasons. Furthermore, 

there must be elements d, e E C with z := (d, e) ~ (x, y). Then G' = (x, y, z), 

and C' C G' n Z(G) = (xy, z). 
Now consider (da, C). Similarly as above, it must be a proper subgroup of G' 

that  is normal in G and nontrivially acted upon by G/C. Hence (da, C) = (x, y) 
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or (da, C) -- (xz, yz>. Since (da, e) = (d, e)(a, e) �9 (d, e)(a, C) = z (x, y>, the case 

(da, C) = (xz,yz> must be the correct one. Because of z = (d, e) = (ed, e), we 

may replace d by ed in this argumentation, and find that  also (eda, C) -- (xz, yz>. 

But then (eda, d) -- z(da, d) �9 (eda, C) M z(da, C) = (xz, yz> M z <xz, yz> = O, 

contradiction. 

We want to show next that  FG is not Lie centre-by-metabelian. 

Again, assume otherwise and choose elements a, x, y, z �9 G such that  G / C  = 
(aC), (a, C) = G' = (x, y, z), and ax = y, Oy = x, az = z. 

The lower central series of G is G ~ (x, y, z> D (xy) ~ 1, so Lemma 3.6 applies 

here. 

Since (a, C) = G' ~= Z(G),  there is an element c �9 C with ]((a, c), ~(a, c)) I = 4. 

On the other hand, 3.6 implies that  I((a,c), ~(a,c),(a,d)) I <_ 4 for all d �9 C. 

Together this shows that  I(a,C)l < 4, in contradiction to I(a,C)[ = [G' I = 8. 

I 

Remark 3.9: We have established Theorem 1 for all groups G with exp(G ~) = 2 

and [G' I < 8. Before we turn to the case where IG'I is arbitrary in 3.12, let us 

study two particular situations in the following lemmata.  

LElvlMA 3.10: Let N be an elementary abelian normal subgroup of order 2 '~+1 

(n E No) of a group G such that N n Z ( G )  = (G ,N)  has order 2. Write 
g = ( x l , . . . ,  x~, z) with N M Z(G) = (z). Then G / C c ( g )  is elementary abelian 
of order 2 n. More exactly, there are elements a l , . . . , a n  E G such that for all 

i , j  �9 { 1 , . . . , n } ,  

(al,xj)  = I 1 
g 

i f i r  
z i f i - - j .  

Proof: The action of G by conjugation on the F2-vector space N w.r.t, the basis 

xl ,  . . . ,  xn, z defines a matr ix  representation A: G -+ GL(n + 1, 2) with kernel 

Ca(N) and image 

B C A := " c G L ( n +  1,2). 
- 1 - 

. . ,  ~k 

The elementary abelian group A may be interpreted as an F2-vector space of 

dimension n with subspace B. So let us choose a basis b l , . . . , b k  of B with 

k < n. I t  clearly suffices to show that  B = A, or equivalently, k = n. 

Again shifting our point of view, we now interpret the elements bi, i = 1 , . . . ,  k, 

as F2-1inear mappings N -+ N,  and compute dimCN(bi) = dimKer(bi  - idN) = 
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d i m N  - rk(bi - idN) = (n + 1) -- 1 = n; i.e. CN(bi) is a hyperplane in N. Hence 
k b l = d i m C N ( B ) = d i m N i = l C N  ( i)_> (n+  l ) - k > _ _ l .  T h i s s h o w s k = n .  | 

LEMMA 3.11: Let G be a group that is generated by three elements, with elemen- 

tary abelian commutator subgroup G' of order 16, such that (G, G') = G' A Z(G) 

has order 2. Then FG is not Lie centre-by-metabelian. 

Proof: We assume tha t  FG is Lie centre-by-metabelian, and write G = (g, h, k) 

and (G, G') = (z). Note tha t  G has class 3. Then G/(z)  has class 2, hence 

its commuta tor  subgroup is generated by the commutators  of its own genera- 

tors, i.e. G'/(z)  = ((g, h), (g, k), (h, k), z ) / ( z ) .  Since G'/(z)  has order 8, also 

((g, h), (g, k), (h, k)) has order 8. 

If we set w := (g, h), x := (g, k), y := (h, k), we obtain G' = (w, x, y, z). 

Assume tha t  aw ~ w. Then gw = wz. So if ~z ~ w, then haw = w. Choose 

Iz C {h, hg} with hw = w. Another  computat ion in the usual style (which we will 

skip here, see [7, lemma 4.11] for details) then leads to the following contradiction: 

0 = (1 + 5) [k, g + hg, ~ + g~] = (1 + x)(1 + z)(1 + ~)(1 + y)ahk # 0. 

Therefore (g, g, h) = (g, w) -- 1. Similarly one shows tha t  

( ,)  (r, r, s) = 1 

for all r, s e {g, h, k}. Hence (r, s)(r - I ,  s) = r-X(r, s)(r -1, s) = (r - I t ,  s) = 1, i.e. 

(**) (r -1, s) = (s, r) = (~, s) 

for all r, s E {g, h, k}. 
Since G/CG(G') = (g, h, k)/Ca(G') is elementary abelian of order 8 by 3.10, 

the elements g, h, k all act nontrivially on G ~. Together with (*), it follows tha t  

(g, y) = z, (h, x) = z, (k, w) = z. But then 

z = z 3 ----(g,y)(h,x)(k,w) : (g ,h ,k ) (h ,g ,k ) (k ,g ,h)  

--- (g, h -1, k)(h, k -I  , g)(k, g - l ,  h) = 1 

by (**) and Wit t ' s  identity, contradiction. | 

LEMMA 3.12: Let G be a group with exp(G') = 2 and [G'[ >_ 8. I fFG is Lie 

centre-by-metabetian, then G has cIass 2. 

Proof: Let G be a counterexample. Then FG is Lie centre-by-metabelian, 

exp(G')  = 2, ~'3(G) ~ 1, and, by 3.9, IG'I _> 16. 
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Set C :-- CG(G'). Then G/C is abelian. By 3.1, exp(G/C) [ 4 or ]G/C[ = 3. In 

the latter case, 3.1 also implies that G' -- (G, G') x Co, (G) -- % (G) x (Z(G) M G') 
and ~/4(G) = (G,73(G)) = "y3(G) = (G,G') ~- V4. We write Z(G) riG' = (z) z N 
for some z C G', N <_ G'. Then G / N  is a non-nilpotent group with (G/N)' = 
G ' /N  ~ Z2 x Z2 x Z2. Then by 3.9, F[G/N] is not Lie centre-by-metabelian, 

contradiction. Therefore, exp(G/C) I 4. 

We claim next that  %(G) is a finite 2-group. By [5], G has a subgroup A of 

index at most 2, such that  A ~ is a finite 2-group. If G = A, then our claim follows 

immediately. 

So s u p p o s e G  ~ A, and let t E G \ A .  T h e n G  t = (t ,A)A' C_ A as usual. 

Similarly, %(G) (G, G') = (A, G')(t, G') C_ A' (t, G'), since (A, G') <~ G and 

(ta, h) = t(a,h)(t,h) E (A,G')(t,G') for all a E A, h C G'. Now G' is abelian, 

and thus (t, xy) = (t,x)(t,y) for all x,y  C G'. Therefore ( t ,G')  = (t, A' (t,A)) = 
(t ,A')( t , t ,A) c A' (t , t ,A) = A'(t,((t ,a): a e A)) = A' ((t,t,a): a �9 A), hence 

%(G) C_ A' ((t,t,a): a �9 A). But for a �9 A, one has (t,t,a) = t(t,a)(t,a)-I = 
t(t,a)(t,a) = (t2,a) C A'. This shows %(G) C A'. Now since A' is finite, 73(G) 

is finite, too (and of exponent 2). 

Then G/CG(%(G)) is also a finite group; in fact, it is a finite 2-group, because 

of exp (G/Cc(%(G))) I exp(G/C) 14. Considered as F2[a/CG(~3(O))]-module, 

73(G) contains a submodule in every possible dimension. In other words: For 

any q �9 {2, 4, 8 , . . . ,  I?3(G)]}, there is a subgroup N of %(G) of order q which is 

normal in G. 

Assume that  I G' : %(G)I < 4. Pick a subgroup N of %(G) such that N __ G 

and I G~ . N] = 8. Then G / N  is a counterexample to 3.9, contradiction. Hence 

IV': %(o)1 _> 8. 
We now choose a normal subgroup N of G with N C_ 73(G) and ITa(G) : NI = 2. 

Then G / N  is also a eounterexample, so after replacing G by G/N,  we may assume 

that  ha(G)l -- 2. Then %(G) is central, and G has class 3. We write %(G) = (z). 

Clearly, there is a finite set X C_ G such that ](X)'] > 16 and (X)' g Z(G). 
By possibly adding one element of G to X which acts nontrivially on some com- 

mutator  of (X}, we may assume that  also (X) has class 3, i.e. %((X))  = (z). 

Therefore also (X) is a counterexample, and after replacing G by (X), we may 

assume that  G is finitely generated. 

Then G/(z) is a finitely generated group of class 2, so G'/(z) is finitely gener- 

ated, too. In fact, it is finite since it is elementary abelian. But then also G ~ is 

finite. 

From now on, we may argue by induction on IG']. We write IG'I = 2 '~+1 with 
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n _ 3, and assume that the lemma is already proved for every applicable group 
H with tg ' l  < 2 n. 

If s E (G' A Z(G)) \ {1}, then, by induction, G/(s) has class 2. Therefore 

(z) = 7a(G) C_ (s), hence s = z and G' A Z(G) = (z) = 73(G). 

We write G' = (Xl,. . . ,Xn,Z} with Xl, . . . ,Xn C G' \ Z(G). By 3.10, there are 

elements a l , . . . ,  an E G such that 

( a ~ , x j ) = { z l  ififi=ji~j for all i ,  j = l , . . . , n ,  

and G/C = (a lC , . . .  ,anC) is an elementary abelian group of order 2 n. Hence 

HI := (a2, a3 , . . . ,  an, C) and H2 := (al, a3 , . . . ,  an, C) are normal subgroups of 

G of index 2 with G = H1H2. 

In the case Hi  = G',  we have Z(H1) N H i  = C c , ( H , )  --  Ca,(a2,...,an) = 

(z, xl) and (z) _ (Ul ,S~)  = (H1,G') _D (a2,G') = (z). Hence Hi is a group of 

class 3, and therefore also a counterexample. Then H1/(Xl}, which also has class 

3, is also a counterexample whose commutator subgroup is elementary abelian of 

order 2'L But this contradicts the induction hypotheses. 

Therefore U~ < G'. Then induction implies that [H~[ < 4 or el(Hi) = 2. 

If Hi has class 2, then H~ C CG,(H1) = (xi,z).  Therefore, we have [H~I < 4 

in any case. Moreover, since G' C_ C C_ H1, we know that (z) -- (HI, G') C H~, 

and therefore [H~/(z)! <_ 2. Similarly, [H~/(z)l < 2. 
Since G/(z) has class 2 and is generated by C t2 {a~,. . . ,  an}, we have 

G'/(z) -- ((al,a2)) HiH~/(z ) '  ' �9 

It follows that [G': (z)l _< [((al,a2), z) :  (z)[. [H~: (z)[. [H~: (z)[ _< 2 . 2 . 2  = 8, 

and thus 16 <_ IG'I = 2 IG' : (z)t _< 16. 
Consequently n = 3, G' = @1, x2, x3, z), and G/C = (alC, a2C, a3C). Then 

(al,a2) must not be contained in ((al,a3), (a2,a3)) C_ H{H~, for otherwise 

Ia '  I < 16. Similarly one shows that (al,a3) ~ ((al,a2), (a2,a3)} and (a2,a3) 

[((al,a2), (al,a3))[. Hence I((ai,a2), (al ,aa),  (a2,aa))l -- 8, i.e. ](ai,a2,a3)'l>_ 
8. Then (al, a2,aa} acts nontrivially on (ax, a 2 , a J ,  hence cl((ax, a2,aa)) > 2. 

By 3.9, I (aa, a2, aa)' I >- 16, and thus (al, a2, a3)' = G'. But then (al, a2, aa) is a 

counterexample to 3.11, contradiction. | 
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