ISRAEL JOURNAL OF MATHEMATICS 115 (2000), 51-75

LIE CENTRE-BY-METABELIAN GROUP ALGEBRAS
IN EVEN CHARACTERISTIC, 1

BY

RICHARD ROSSMANITH

Am Burggraben 4, 65760 Eschborn/Frankfurt, Germany
e-mail: richard.rossmanith@de.arthurandersen.com

ABSTRACT

We complete the classification of the Lie centre-by-metabelian group
algebras over arbitrary fields by solving the case of characteristic 2.

Let G be a group (not necessarily finite), and let FG be its group algebra over
some field F of characteristic p > 0. For subsets X,Y of FG, we denote by
[X,Y] the F-span of all elements [z,y] := zy —yz withz € X, y € Y. The
first and second derived Lie ideals of FG are defined as (FG)' := [FG,FG]| and
(FG)Y' := [(FG), (FG)'], respectively. (Note that these are Lie ideals, but not
necessarily associative ideals of FG.) We call FG Lie centre-by-metabelian,
if [FG,(FG)"] = 0. (In this case FG/Z(FG), regarded as a Lie algebra, is
metabelian.)

Sharma and Srivastava showed in [12] that such group algebras are necessarily
commutative if p > 3. By a general theorem of Passi, Passman and Sehgal [5],
the same holds for p = 0. The case p = 3 is more interesting, since then FG is
Lie centre-by-metabelian if and only if |G’| € {1, 3} (cf. Kiilshammer—Sharma [4],
Sahai-Srivastava [9]). In his survey article [1], A. Bovdi posed the problem for
the remaining case p = 2. Its solution shall be presented here, as follows:

THEOREM 1: Let G be a group, and let F be a field of characteristic 2. Then
FG is Lie centre-by-metabelian, if and only if one of the following conditions is
satisfied:

(i) |G| divides 4.

(ii) G’ is central and elementary abelian of order 8.
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(iii) G acts by element inversion on G' = Zy x Z4, and Cc(G") C ®(G).
(iv) G contains an abelian subgroup of index 2.

Roughly speaking, this means that either G’ has to be “small” (conditions (i),
(i), and (iii)), or G contains a “large” abelian subgroup (condition (iv)).

This paper first handles the (comparatively easy) “if”-direction in section 1.
We then prove the converse direction for groups of class 2 in section 2, and for
groups with commutator subgroups of exponent 2 in section 3 (by showing that
they necessarily are of class 2 in our setting). In a second paper (8], devoted to
groups that act more vigorously on their commutator subgroups, the proof of
the theorem will be completed. (Both papers have their origin in the author’s
dissertation thesis [7].)

For elements a,b of the group G, we will use “left” commutators (a,b) =
aba~1b~1, “left” conjugation % := aba~!, and “right normed triple commuta-
tors” (a, b, c) := (a, (b,c)). The lower central series of G is written as G = v, (G) &>
12(G) > v3(G) > ---, and, if G is nilpotent, its class is denoted by cl(G). As
usual, G’ is the commutator subgroup of G, ®(G) is the Frattini subgroup of G,
and, if G is a p-group, then Q(G) is the subgroup generated by all elements of
order p. The letters A,,, Doy, Q8, Sn, V4, Z,, refer to popular isomorphism types
of groups.

Similarly as above, we set [a, b, c] := [a, [b, c]] for elements a, b, c of FG, and we
write the lower central Lie series of FG as FG = 1 (FG) & % (FG) &> v3(FG) > - - -
(note again that this is a descending chain of Lie ideals, and not ideals, of FG).
The sum over all elements of a finite subset X of FG is written as X .

If the integer n divides the integer m, we write n | m.

Let us henceforth fix the characteristic of the base field F as p = 2.

It is now a trivial observation that for any subgroup X of G, we have
X*(1+x) = 0 if and only if z € X. Moreover, if X = (zi,...,7,) has ex-
ponent exp(X) = 2, it is easily checked that

(L+z)(14z2) (1 +z) = {X+ if | X| =2,

0 if |X]| < 2"

Another easy exercise is to show the following: If G’ C N <4 G and G/N =
(@1N,...,a,N), then G’ = ((a;,0;):1 <i<j<n) (a1,N) - (an, N)N'. We
will apply this often to N := C¢(G’) in the case that G’ is abelian.

We will also frequently use the fact that Cg(G')’ C G'NZ(G), which is a direct
consequence of the Witt identity [3, Satz I11.1.4].
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1. The easy direction
Remark 1.1: For any group G we denote by w(FG) := F{1 + ¢: ¢ € G} the

augmentation ideal of FG. If H 4 G, then w(FH)FG = FG w(FH) is the kernel
of the canonical epimorphism FG — F{G/H] (cf. [6, lemma 1.1.8]. In particular,
FG /w(FG'FG = F[G/G'] is abelian, hence (FG)' C w(FG')FG. Then

(FG)" C [w(FG")FG, w(FG")FG| C (w(FG')FG)* = w(FG')*FG

Moreover, (G')T FG is a central ideal of FG, since G/ < G implies (G")* €
Z(FG), and for g,h € G, we have

(G g,k = (G)F[g,h] = (G") (1 + (g, h)hg = 0.

LEMMA 1.2: Let G be a group with |G'| = 2. Then (FG)' C (G")*FG. In
particular, ¥G is Lie centre-by-metabelian.

Proof: We write G’ = (z). Then (FGY C w(FG')FG = (1+z)FG = (G")* FG.
[ ]

LEMMA 1.3: Let G be a group with |G'| = 4. Then (FG)” C (G')"FG. In
particular, FG is Lie centre-by-metabelian.

Proof:

CASE 1: G’ = (z,y) = V,. It is easily verified that (FG)” C w(FG')2FG =
Q1+z)(1+ y)lFG (GH*F

CASE 2: = {(z) =2 Z4. We consider the canonical epimorphism FG —
F[G/(z?)]. By 1.2, v3(F[G/{z?)]) = 0, s0 v3(FG) C w(F(z?)) FG = (1+z*)FG.
Check that z2 € Z(G), and w(FG')?*FG = (G")" FG. Then (FG)” C 1(FG) =
[FG, v(FG)] C [FG, (1 + z2)FG] = (1 + z?) [FG,FG] = (1 + z)? (FG)' C
w(FG3 -FG C (G)'FG.

LEMMA 1.4: Let G be a group of class 2 with G' = Zy X Zy x Z,. Then (FG)" C
(G")T FG. In particular, FG is Lie centre-by-metabelian.

Proof: We have exp(G') = 2 and G’ C Z(G). Then by Jennings [6, theorem
3.3.7], the second dimension subgroup of G’ is trivial, so by [6, lemma 3.3.4],
wFGHFG = {1+ z1) - (1 + T,): T1,...,Zn € G'}FG for all n € N. In
particular, w(FG')} FG = (G') FG. But then
(FGY, (FGY) C [w(FG')FG,
w(FG')FG] = w(FG')? [FG,FG] C w(FG')*FG C (G') FG. 1
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LEMMA 1.5: Let G be a group that acts by element inversion on G' &2 7y x Z,,
and suppose that Cg(G")' C ®(G’). Then FG is Lie centre-by-metabelian.

Proof: Write G’ = (z,y) with 22 = 1 = ¢*, and set C := Cg(G’). Then
IG:C|] =2, and C’ C ®(G') = (2>CZG) and % = z, % = y° for all
aceGNC.

Obviously (FG) is spanned by all elements of the form [c,d] = cd + Ycd),
[b, a] = ba + %ba), or [a,c] = ac+ Yac), with ¢,d € C, a,b € G~ C. Hence it is
also spanned by all elements of the form ¢+ %, ¢+ %, or a + %, with ¢,d € C,
aeG~NC.

Consequently, (FG)” is spanned by all elements of the form

(*) [e+ 4 g+ hg], [+ %, d+ *4d], [a+ ‘%, da+ Y(da)], [c+ %, da+ Hda)),

with ¢,d,e € C, g,h € G, a € G\ C (note that if a,a’ € G\ C, then a' = da for
some d € C). It suffices to show that all elements of this form are central in FG.
By Jennings [6, theorem 3.3.7], the series of dimension subgroups of G’ is given
as (z,y) > (y?) > 1. By [6, lemma 3.3.4}, w(FG")® = 0, and w(FG')* = F-(G")".
Then 1.1 implies that w(FG')*FG C Z(FG).
Recall that (FG)' C w(FG')FG. Note also that 1+ C’ C w(FG')?, since C’ is
C

contained in the second dimension subgroup of G’. Hence (FC)’ C (1+C’)FC C

w(FG")?2FG. We now check that

[e+ % g+ ") = [(1+ (d,¢))e, (1 + (h, 9))g]
= (1+ (d,c))(1 + (h, 9))[c, 9] € W(FG)*FG

e+ %,d+ *d] =[(1+ (a,¢))c, (1 + (ea,d))d]

= (1 + (a,0))(1 + (ea,d))[c,d] € w(FG')*FG,
[c+ %,da+ %(da)] = [(1 + (a,c))c, (1 + (e, da))da)

= (1+ (e, da)) ((1 + (a,¢))eda + (1 + (a, c)'l)dac)
= (1 + (e, da)) (1 + (a,¢) + (1 + (a, c)_l)(a,c)(d, c)) cda
= (1 + (e,da))(1 + (a,¢))(1 + (d, ¢))eda € w(FG')* FG.

Moreover,

T:=[a+ %,da + Yda)] =[(1 + (c,a))a, (1 + (e,da))da]
=(1 4 (c,a))(1 + (e,da) Hada + (1 + (e, da))(1 + (¢, a) ' )da?
=(o(a,d) + %)da?,

where o := (1 + (c,a))(1 + (e,da) 1) € w(FG")2.
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It remains to show that 7 is central in FG, or equivalently, that 7
commutes with all f € C, and with a. Recall that (FC)' C (1+4?)FC, and that
%(1 4 9%) = t(1 +4?) for all t € G'. Then check [f,7] = (c{a,d) + %)[f, da®} €
(o(a,d)+ %) (FC)' C o((a,d)+1)(1+y?) FC C w(FG')5FG = 0. Finally, observe
that °r = (% %a,d) + ) %da? = (% (a,d)" + 0)(a,d)da® = 7. |

Remark 1.6: Suppose that G is a group that has an abelian subgroup A4 of in-
dex 2. Then [5, lemma 1.3] provides us with an embedding of FG into Mat(2,[FA)
(the algebra of all 2 x 2-matrices over FA). It is an easy exercise to show that
Mat (2, R) is Lie centre-by-metabelian for any commutative ring R. Hence so is
FG. This observation concludes the proof of the “if”-direction of Theorem 1.

2. Groups of nilpotence class 2

We are now going to verify Theorem 1 for groups G of class 2. We will freely
use the well-known properties of such groups, such as (ab,c) = (a, ¢)(b,c) for all
a,bc€ G,or G' = ((gs,05): 1 <i<j<n)if G={(g1,...,9n)

Remark 2.1: Let G be a group of class 2. Following A. Shalev [11], we set
S, := {a € G: (a,b) = z for some b € G}

for z € G'. If (a,b) = z, and n,m,i,j € Z, then (a™b™,a’b?) = ™™ If n,m
are co-prime, then a™b™ € S, (similarly b™a™ € S,). Consequently S, = S; ' =
S,-1. (But note that the example G = Dg shows that S; need not be a subgroup
of G.)

We will mainly use the following properties of S;:
(142)S; C[Se, Sz], and (1+1)38, C (FG)".

To see this, let b € S, and choose an a € G with = = (b,a™!) = (a,b). Then
(1+2)b=>b+ (a,b)b=b+aba! =[a~',ab] € [S;,S:z]. Apply this to obtain
(FG)" D [(1 4 2)S, (1 +2)Sz] = (1 + 2)2[Sz, Sz] 2 (1 + )38,

LEMMA 2.2: Let G be a group of class 2 such that FG is Lie centre-by-metabelian.
If G is generated by two elements, then |G| | 4.

Proof: We write G = {g,h). Then G’ = (z), where z := (g,h). By 2.1,
(1+2)g € (1+2)*S: C [(1 +2)3S,,5] C [(FG)",FG] = 0. Hence 0 =
(14+z)*=1+4+2% andz*=1. |
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LEMMA 2.3: Let G be a group of class 2 such that FG is Lie centre-by-metabelian.
If {z)| > 4 for some z € G', then {y € G': S; NS, # 0} C (S, G) C ().

Proof: It suffices to show the latter inclusion, since the former follows directly
from the definition of S,. W.l.o.g., suppose that S, # 0, and let a € S, g €
G. Then (z)"(1+ (a,9)) = (1 + 2)*[a, g)(ga) ™" € (1 +2)°[S,,FG](ga)™" =
[(1+ )3S,,FG](ga)! C [(FG)",FG](ga)~! =0, and thus (a,g) € (z). |

LEMMA 2.4: Let G be a group of class 2. If FG is Lie centre-by-metabelian,
then G’ is an elementary abelian 2-group, or G' = Z,.

Proof: By considering the two-generator subgroups of G, we have (g,h)* = 1
for all g, h € G by 2.2. If exp(G’) = 2 we are done.

Otherwise, there is a commutator of order 4 in G, say z = (a,b). Let y = (¢, d)
be an arbitrary commutator in G. By 2.3, we know that (a, b), (a,d), (¢, b) € (z),
so there is a k € {0,1,2,3} such that (ac, bd) = (a,b)(a, d)(c,b)(c,d) = z*y. Now
consider (ac,b) = (a,b)(c,b) = z{c,b), and distinguish the following cases:

CASE 1: (¢,b) = 1. Then (ac,b) = z, hence ac € Sz N S;x,, and zFy ¢ (z) by
2.3.

CasE 2: (¢,b)=z. Thenc€ S, NS, and y € (z).
CaSE 3: (c,b) = z2. Then (b,ac) = (z(c,b))"! = z, so ac € Sy N S,k and
Ty € (z).
CASE 4: (c,b) =z®. Then (b,c) =z and c € S; N Sy, hence y € (z).
In any case, we have y € (z). Therefore G' = (z) = Z4. 1

Remark 2.5: The preceding lemma already comes very close to our goal in this
section. All which remains to be faced are groups G with elementary abelian,
central commutator subgroups G’ of {2-)rank greater than 3. We have to show
that if FG is Lie centre-by-metabelian, then G contains an abelian subgroup A
of index 2.

So suppose that G is a counterexample, and A is a maximal abelian subgroup
of G (the existence of A is guaranteed by Zorn’s lemma). To make the proofs
of the following lemmata work, let us agree upon choosing A in such a way
that |A : Z(G)| > 2, if at all possible. In other words, we may assume that if
|A: Z(G)] <2, then |B: Z(G)| < 2 for all maximal abelian subgroups B of G.

Then FG is Lie centre-by-metabelian, and |G : A| > 2, and |G’| > 16, and
exp(G') = 2, and G’ C Z(G) C A (in particular A < G), and Cg(4) = A (in
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particular A > Z(G)). Let g,h € G. Then (g2, h) = (g,h)% = 1, i.e. all squares
are central in G. Therefore G/Z(G) and G/A are elementary abelian 2-groups.
Hence |G : A| > 4.

We divide our examination of G into four cases (Lemmata 2.6-2.9), depending
on the index of (G,A) in G'. In each case, we will show that FG is not Lie
centre-by-metabelian, in contradiction to our assumption.

LEMMA 2.6: Let G and A be as in 2.5, and suppose that |G’ : (G, A)| > 8. Then
FG is not Lie centre-by-metabelian.

Proof: Suppose, for contradiction, that FG is Lie centre-by-metabelian.
For G := G/(G, A), we have exp(G') = 2, and |G’| > 8.
Let us at first assume that there are 3,%,4,% € G with | (3,1, 4,

(5,t) # 1. If (4,9) € {(5,%)), then there are elements p € {3,

with (p,q) ¢ ((5,1)), wlog. p =35, § = 4. Then (51%a,70) = ,

{(3,0), (@, 50))| = 4 since (4,57) = (4,s)(8,9) € (4 5)((51) # ((51)). Soby

replacmg ¥ by 50 if necessary, we may assume that \((§, ) (@,7))] = 4. Since

w.l.o.g. p =35, q=a;ie. |{(51),(a0), (s,u))l = 8.

We move back into G by choosing preimages s,t,u,v € G of §,1,%, 7, respec-
tively. We set = := (s,t), y := (u,0), z := (s,u), then [{z,y,2)| = 8, and
(z,y,2) N (G, A) = 1. Moreover, su ¢ Cg(A) = A, for otherwise z = (u,s) =
(s,su) € (G, A). Consequently there is an a € A with w := (su,a) # 1. Because

€ (G, A), we have |(z,y, z,w)| = 16.

But then (1+z)(1 +9)(1 +2)su = (1+2)(1 + y)[s,u] = [(1 + z)s, (1 + y)u] €
(1 + )8, (1 +v)S,] € (FG)”, and 0 # (1 + z)(1 + y)(1 + 2)(1 + w)asu =
(14 2)(1+y)(1+2)[su,a] = [(1 +z)(L+y)(1 + 2)su, a] € [(FG)",FG] = 0. This
means that our assumption is rubbish, and we may conclude:

(%) If H < G is generated by four elements, then |H'| < 4.

‘We will reduce this conclusion to absurdum. For simplicity, and since we will
not switch back to G anymore, we will omit the bars ~ over the elements of G in
the following.

Choose s,t,u,v € G with [{(z,y)| = 4 for z := (s,1), ¥ := (u,v). By (%),
(s,t,u,v)" = (z,y). In the case that (s,t, w) = (z) = (5,t,) and (s,u,v)' =
(y) = (t,u,v)" we obtain ({(s,t),{u,v)) C {(z) N (y) = 1, and it follows that
(su,t) = (s,t) = z, (su,v) = (u,v) = y, hence (su,t,v)’ = (z,y). In any
case, there are three elements s,t,u € G such that |(z,y)| = 4 with z := (s,1),
y = (s,u).
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Because of |G’| > 8, there are g, h € G with 2z := (g,h) ¢ (z,y). Conclusion
(x) then implies that

(s,t,u,9)" = (z,9) = (s,t,u, )",
(5,t,9,h)" = (3,2},
(s,4,9,h) = (y,2);
= ({g:h),s) Sz, y) N (z,2) N (Y, 2) =
({g,h) ) € (2, y) N (y,2) = (v),
({g:h},t) € (z,9) N (z,2) = (z).
If ({(g, h),u) = (y) and ((g,h),t) = (z), we would have (g, h,u,t)’ D (z,y,2) in

contradiction to (). So assume w.l.o.g. that ({g,h),t) = 1. If (g,u) = y and
(h,u) = y, then (gh,u) = y* = 1. Moreover, z = (g,h) = (h,g) = (gh,9) =
(g,g9h) = (h,gh) = (gh h). Thus, by permuting {g,h,gh} in a suitable way, we
may assume that (g,u) = 1. But then (gs,t) = (s,t) = z, (g9s,u) = (s,u) = v,
(gs,h) = (g,h) = z, and (gs,t,u, h)’ D (z,y,2) in contradiction to (*). |

LEMMA 2.7: Let G and A be as in 2.5, and suppose that |G’ : (G, A)| = 4. Then
FG is not Lie centre-by-metabelian.

Proof: Assume that FG is Lie centre-by-metabelian.

Set G := G/(G, A), then exp(G') = 2 and |G'| = 4. As in the proof of 2.6,
there are 3,%,4 € G with G’ = (5,%,4) = (z, g), where 7 := (3,1), § := (5,4). If
(t,7) = 7 then (f,5%) = 22 = 1 and (5, 5a) = ¥; if ({,4) = § then (8{,2) = §°> =1
and (3, 5t) = z; and if ({,a) = Z§ then (5%, 54 ) =1and (, §t) = T and (5, Eﬁ) =g.
Thus, by replacing  (respectively %) by 5t (respectively i) if necessary, we may
assume that (£,7) = 1.

Let now s,¢,u,z,y € G be suitable preimages of 3, ¢, %, Z, §, respectively, such
that z = (s,¢) and y = (s,u). Certainly (¢t,u) € (G,A4). If (t,u) = 1, let
a € AN Ca(t) # 0, then (t,ua) # 1. Thus, by replacing u by ua if necessary, we
may assume that w := (t,u) € (G, A) ~-{1}. Then (s,tu) = zy and

o:=1+2)1+y)(1+wittu = (1+zy)(1+ z)(1 + w)ttu
=(1+2zy)(1 + z)[tu, t] = [(1 + zy)tu, (1 + z)t]
€ [(1+ zy)Sey, (1 +2)S,] C (FG)".
If (u,A) € (w), and z := (u,b) ¢ (w) with b € A, then |[(z,y,2,w)| = 16 and

therefore

0=[bo] =21+ 2)1 +3)1 +w)bu} = 21+ z)(1 + y)(1L + w)(1 + 2)bu # 0,
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contradiction (recall that all squares are central in G, cf. 2.5). Hence (u, A) C (w
Similarly one shows that (¢, A) C (w); this implies ((t,u),4) = (¢, A)(u, A)
(w).

Now |G’| > 16 implies |(G, A)| > 4, so there is an element g € G with (g, 4) €
(w). The map o: A = A, a — (g, a), is a group homomorphism with image (g, 4),
hence o~ 1({w)) < A. Consequently A # Ca(t) U o~ ({w)), so there exists an
a € Asuch that (t,a) # 1 (i.e. w = (t,a) = (ta,a)) and z := (g,a) € (G, A)~(w).

Set & := (s,ta) = z(s,a) € (G, A); then |(Z,y, z,w)| = 16. By 2.1,

N >~

(14 ) (1 +w)(1 + F)sta = (1 + y)(1 + w)[s, ta] = [(1 +y)s, (1 + w)ta] € (FG)",
hence 0 = [g, (1 + y)(1 + w)(1 + Z)sta] = (1 +y)(1 + w)(1 + £)(1 + (sta, g))gsta.
This implies (st,g)z = (sta,g) € (Z,y,w), i.e. (st,g) = z (mod (Z,y,w)). Let
&:=(as,ta) =wZ =% (mod (w)), and §:= (as,u) =y(a,u) =y (mod (w)).
We obtain
(1+w)(1+y)(1+2)ta’s = 1+ w) (1 +§)(1 + 2)ta-as
=[(1 + w)ta, (1 + §)as]

€ (FG)”, which leads to the contradiction 0 = [g, (1 + w)(1 + y)(1 + Z)ta’s] =

a?(1+w)(1+y)(1 + Z)(L + (st,g))gst = a*>(1 + w)(1 +y)(1 + Z)(1 + 2)gst # 0.
|

LEMMA 2.8: Let G and A be as in 2.5, and suppose that |G’ : (G, A)| = 2. Then
FG is not Lie centre-by-metabelian.

Proof: Assume that FG is Lie centre-by-metabelian. We have |(G, A)| > 8.
Suppose at first that there are s,t € G with (s,t) ¢ (G, A) and |({s,1) , A)| > 8.
Then argue as follows:

(*)
Va,be A: (14 (s,a))(1+ (,0)(1 + (s,t))ts = [(1 + (¢, b))t, (L + (s,0))s] € (FG)”
== VYa,b,c € A: 0 =[c,(1+ (s,a))(1 + (t,0))(1 + (s,t))ts]
= Va,b,c€ A: 0= (1+ (s,a))(1 + (¢,5))(1 + (s,8))(1 + (ts,¢))cts
= Va,b,c € A: [{(s,a),(t,b), (ts,c), (s,t))| <8
= Va,b,c € A: |((s,a),(t,b),(ts,c)}| < 4.

Since ((s,t),A) = (s, A)(t, A), assume w.lo.g. |(s,A)] > 4. Choose a,b €
A such that (¢,b) # 1 and (s,a) ¢ ((t,b)). Then () implies that (ts,A) C
((s,0), (t,b)). Hence (s, A) £ ((s,a), (t,b)) or (£, 4) £ ((s,a), (¢, b)).
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If (s, AyN (t, A) = 1, then ({(s,t), A) = (s, A)(t, 4) = (s, A) x (¢, A). Let c € A4,
then (5, 0)(t,¢) = (st,) € ((5,a), (t,)), hence (s,¢) € {(s,a)) and (t,¢) € {(t,b))-
But this implies that ((s,),A4) = (s, A)(¢, A) C ((s,a), (t,b)), contradiction.

So we may assume that (s, A) N (¢, A) # 1. Then there are a,b,d € A with
1 # (¢,b) = (s,d) and (s,a) ¢ ((t,b)), and () implies again that (ts,4) C
((s,a), (t,b)) = ((s,a),(s,d)) C (s, A). It follows that ({(s,t),A) = (s, A)(st, A) =
(s, A). Conclusion (*) then implies that |{(s, a), (,b), (s,c)}| < 4 for all a,b,c €
A, i.e. (t,A) is contained in all subgroups of (s, A) of order 4. The intersection
of all those subgroups is trivial, because |(s, 4)| > 8, but (¢, A) cannot be trivial,
because t ¢ A = Cq(A).

This shows that |({s,),4)] < 4 for all s,t € G with (s,t) ¢ (G, A).

Assume now that there are s,t € G with 2z := (s,t) ¢ (G, A) and |((s,1) , A)| =
4. Then there is an element g € G with (g, A) € ({(s,t), A).

If |(s,A)| = 4, then ((s,t),A) = (s,A). This implies |({s,g),A4)| > 8 and
[((s,tg),A)| > 8, hence (s,g9) € (G, A) and (s,tg) € (G, A) by the above. But
then also (s,t) = (s,t9)(s, 9) € (G, A), contradiction.

Consequently |(s, A)] = 2, and similarly |(¢,4)] = 2, say (s,A) = (z) and
(¢, A) = (y). Let a € A. Then |(z,y,2)| =8, s € S;,ta € Sy, (s,ta) = z(s,a) = 2z
(mod (z}) and

(14+z)(1+y)(1+=2)tas = (1+z)(1+y)(1+(s, ta)tas = [(1+y)ta, (1+z)s] € (FG)"

It follows that
0=[g,(1+z)(L+y)(1+2)tas] = (1 +z)(1 + y)(1 + 2)(1 + (g, a)(g, st))tasg,

ie. (g,8t) € (g,a){z,y,2) for all a € A. But this is ridiculous since
Nacalg;a) (z,y,2) = O because of (g, A) £ (z,y, 2).

This shows that |({s,t),A)| = 2 for all s,t € G with (s,t) ¢ (G, A). On the
other hand, there surely are s,t € G with (s,t) ¢ (G, A), since G’ # (G, A).
Then (s,4) = ({s,t),A) = (t,A). Let g € G with (g,A) € ({s,t),A), then
|({g,t),A)| > 4 and |({gs,t),A)| > 4. This implies (g,t) € (G, A) and (gs,t) €
(G, A), which leads to the contradiction (s,t) = (gs,t)(g,t) € (G, A). |

LEMMA 2.9: Let G and A be as in 2.5, and suppose that |G’ : (G, A)| = 1. Then
FG is not Lie centre-by-metabelian.

Proof:  Assume that FG is Lie centre-by-metabelian. Since G’ = (G, A), we
have (G, A)| > 16.
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Let us at first make the additional assumption that |(s, A)| = 2 for all s € G\ A.

We claim that in this case (r,s) € (r, A)(s, A) for all r, s € G\ A with (r, 4) #
(s, A). If not, then there are r,s € G \ A such that |{z,y,2)| = 8, where
(r, A) = (x), (s, A) = (y), and z := (r,s). Since A # Ca(r) UC4(s), there is an
a € A with z = (r,a), y = (s,a). By hypothesis, |(G, A)| > 16, hence there are
te G, ce A withw:= (t,¢) ¢ (z,y,2). For any d € A, we then have

o :=[[s,dr],[s,a]] = [(1+ (s,dr))drs, (1 + (s,a))as]

(1 + (s,dr))(1 + (s,a))[drs,as]

(14 (s,dr))(1 + (s,a))(1 + (drs,as))asdrs

= (14 (s,d)(s,7))(1 + v)(1 + (ds, as)(r,a)(r, s))asdrs
N ——

€{y) €(y)
=(142)1+y)(1 +xz)asdrs = (1+2)(1 +y)(1 + z)asdrs,

i

and
0=[t,o] = (1

=(1
This implies that (¢,ar)
(t,ar) € (t,¢) (z,y,2) N (
tion proves our claim.
We claim next that there are r,s € G\ A with C4(r) # Ca(s). Otherwise we
have C4(r) = C4(s) for all 7,5 € G \ A, hence C4(s) = Z(G) for all s € G\ A.
Let s € G\ A, and consider the homomorphism A — 4, a +— (s,a). Its image is
(s, A) and its kernel C4(s) = Z(G); in particular A/Z(G) 2 (s, A), and therefore
|A : Z2(G)| = 2. By the choice of A, this implies |B : Z(G)| < 2 for all maximal
abelian subgroups B of G (cf. 2.5). Let r € G \ A with (r, A) # (s, A), then
(r,s) € (r, A)(s, A) by the previous claim. Since

2)(L+y)(1 + 2)(1 + (¢, asdrs))asdrst

+
+2)(1+y)(1 +z)(1 + (t,ar)(t,d))asdrst.

€ (t,d){(z,y,2) for all d € A; in particular we have
t,1){z,y,z) = w{z,y,2) N (z,y,2) = 0. This contradic-

(r, A)(s,A) = (r,A) U (s, A) U (rs, A)

(for order reasons) and (r,s) = (s,r) = (s,rs) = (rs,s) = (r,rs) = (rs,r),
we may permute {r,s,rs} in a suitable way and assume that (r,s) € (r, 4),
i.e. (r,s) = (r,a) for some a € A. Then (r,sa) = 1, so we may replace s by
sa and assume (r,s) = 1. Certainly (r,A) # (s,4) = rZ(G) # sZ(G) =
IB : Z(G)| > 2, where B := (Z(G),r,s); but then B is abelian in contradiction
to a previous statement.

Now let r,s € G\ A with C4(r) # Ca(s). If (r,A) = (s, A), there is an
element t € G \ A with (r, A) # (¢, A). If Ca(r) = Ca(t), then Ca(r) # Ca(st)
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and (r, A) # (st, A). In any case, there are r,s € G . A with (r, A) # (s, A) and
Ca(r) # Ca(s), w.lo.g. Ca(r) € Ca(s). We choose such r, s and write (r, A) = {(z),
(s, 4) = {y).

Since |(G, A)| > 16, we may choose t,u € G \ A such that | {z,y,z,w)| = 16
with (¢, A) = (z) and (u, A) = (w). By the first claim, (su,t) € (su, A)(t, A) =
(yw, 2}, so there is an e € A such that (su,te) = (su,t)(su,e) € (z). We replace
t by te and henceforth assume that (su,t) € {(z). Let now a,b € A such that
(t,b) = z and (su,ba) = wy. For ¢,d € A, we then have

o = [[cs, dul, [at, b]] = [(1 + (cs, du))ducs, (1 + (at, b))bat]
= (1 + (cs,du))(1 + (at, b))[ducs, bat]
= (1 + (cs,du))(1 + 2)(1 + (ducs, ba) (ducs,t) Jbatducs
=wy €{z)

= (14 (es,du))(1 + 2)(1 + wy)batducs,

and 0 = [r,o](batducsr)™! = (1 + (cs,du))(1 + 2)(1 + wy)(1 + (r, batducs)) =
(1 + (u, c)(s,d)(s,u))(1 + 2)(1 + wy)(1 + (r, batsu)(r,dc)). This implies |E. 4| <
16 with E. 4 := (z,wy, (u,c)(s,d)(s,u), (r,batsu)(r,dc)) for all ¢,d € A. Now
(s,u) € (w,y), so we have (s,u) =1 or (s,u) =w (mod (wy, z)). Furthermore,
(r,batsu) = (r,ab)(r,stu) € (z,wyz), hence (r,batsu) = 1 or (r,batsu) = z
(mod (wy, 2)). Consider the following cases (all congruences modulo (wy, z)):

Case 1: (s,u) =1 and (r,batsu) =1. Set ¢c:=1 and choose
de AN (Ca(s)UCa(r)) #0,
then E; 4 = (z,wy,y, ).
CASE 2: (s,u) =1 and (r,batsu) = z. Set ¢:=1 and choose
d € Calr) N Cals) # 9,
then E. 4 = (z,wy,y, ).

CASE 3: (s,u) = w and (r,batsu) = 1. Choose c € A\ (Ca(u) UCa(r)) # 0
and d € Ca(r) \ Ca(s) # 0, then E. 4 = (z,wy, vy, z).

CASE 4: (s,u) = w and (r,batsu) = z. Setc=d =1, then E, g = (z,wy, w, ).

In any case we obtain E.4 = (z,y,2,w), which leads to the contradiction
|Ec,q] = 16. This shows that our additional assumption at the beginning of the
proof was wrong, so there is an element s € G such that |(s, A)| > 4.
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Assume next that there is an element s € G such that even |(s, A)| > 16. Since
|G : A| > 4, there is a residue class tA (with t € G) distinct from both sA and
A.

If there is an element ¢ € A with 1 # (s,¢) # (t,¢) # 1, there are a,b € A with
l{(s,a),(s,b), (s,c), (t,¢)}| = 16 (because of |(s, A)| > 16). Then (s,c) = (s, s¢),
and (sc,b) = (s,b), and 2.1 imply that

o= (1+(s,a))(1+(5,0))(1+(s,¢))s-sc = [(1+(s,a))s, (1 +(sc,b))sc] € (FG)",

and [FG, (FG)"] 3 [t, 0] = s2(1+(s,a))(1+(s, b)) (1+(s, ¢))[t, ] = s*(1+(s,a))(1+
(5,0))(1 + (8,¢))(1 + (,¢))ct # 0, contradiction.
Therefore, we may assume that

(¥) Va € A,t € G\ (AUsA): (s,a) #1# (t,a) = (s,a) = (t,a).

Let t € G\ (AUsA), a € AN (Ca(s) UCa(t)), then 1 # (s,a) = (t,a) by (*).
Set By := {b € A: (s,b) ¢ {(s,a))} # 0.

If there is a b € B, with (t,b) = 1, then st € G \ (AU sA) and (st,ab) =
(s,a)(t,a)(s,b) = (s,a)%(s,b) # 1 and (s,ab) = (s,a)(s,b) # 1, but (s,ab) #
(s,ab)(t,a) = (s,ab)(t,ab) = (st,ab) in contradiction to (*). Consequently
(t,b) # 1, 1e. (t,b) = (s,b), for all b € B,.

Let now @ € A with 1 # (s,8) # (s,a), then ¢ € B; and & € Bg; in fact
AN Ca(s) = B, U B;. Much as above it follows that (¢,b) = (s,b) for all b € B;.
Together we obtain (¢,b) = (s,b) for all b € ANCa(s). But then also |(t, A)| > 16,
so by symmetry, we find that (¢,b) = (s,b) for all b € A\ Ca(t). It follows that
(t,b) = (s,b) for all b € A, hence (st™1,b) = 1forallb € A, sost™! € Cg(A) = 4,
in contradiction to tA # sA.

This shows that |(s, A)| < 8 for all s € G, and there does exist an s € G with
|(s, A)| > 4. Using similar methods as earlier in the proof, we obtain an element
t € G with (t,A) ¢ (s,A) < (G,A) = G, an element b € A with y:= (s,b) # 1,
z := (t,b) ¢ (s,A), and an element ¢ € A with z := (s,a) ¢ (y); in short:
[(z,y,2)| = 8.

Let d € A be arbitrary, and consider

o= (1+z)(142)(1+y)ds-b = [(1+x)ds, (1+2)b] € [(1+2)Ss, (1+2)S;] C (FG)".
If r € G with (r, A) € (z,y, 2), then

0=[r,0]=(1+2z)(1+2)(1+y)(1+(r,dsb))dsbr
=(1+x)(1+2)(1 +y)(1 + (r,d)(r, sb))dsbr.
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This implies (r,sb) € (r,d) (z,y,2) for all d € A, but ;e 4(r,d) (z,y,2) = 0,
contradiction. |

3. Elementary abelian commutator subgroups

This section deals with groups G such that exp(G’) = 2. We will show that
FG Lie centre-by-metabelian implies G’ C Z(G), so we may apply the results of
section 2.

LEMMA 3.1: Let E be a normal subgroup of exponent 2 of the group G, and
suppose that FG is Lie centre-by-metabelian. If we set C := Cg(E), then:
(1) The element orders in G/C are 1, 2, 3, or 4.
(ii) If aC € G/C has order 3, then E = (a, E) x Cg(a), and |(a, E)| = 4.
(iii) There is no subgroup of order 9 in G/C.
(iv) If G/C is abelian, then |G/C| = 3, or exp(G/C) | 4.

Proof: (i) Let z € E, a € G. Observe that (z,a) = (a,z) = %z. Then

o:=[z+ %, a+ %a) =[(1 + %z)z, (1+ “%z)a]
=(1+ %z)’za+ (1 + %z)(1 + s ’c) “ra
=1+ %z)(1+ 'y ) %xa.

Since (1 + “z%)(% + “z) = 0, we furthermore obtain

0=[a,0la?=(1+ o’y “2)(1 + ’y “293) r + 1+ %z)(1+ 'z °r) %x
=(1+ azm“x)(“zx + %04+ T+ )= (1+ Cro)(z + %z)
=(1+%2% (1+ “’r3) .

(

Expanding the parenthesis yields 1 € {“217 %, aswx, a’pa’y %z}. Now if 1 =

o’y %, then £ = %, if 1 = “sm;, then z = "3:1:, and if 1 = %’z %z, then

oy = o’ “tx, i.e. oy = ’palpap — dpagpaipap = o
(ii) We consider E as an Fz[{aC)]-module. By Maschke [3, Satz 1.17.7], F is

semisimple. There are two nonisomorphic simple Fo[(aC}]-modules: the trivial

one, and a module of dimension 2, on which (aC) acts by cyclic permutation of
the three nontrivial elements.

AssUMPTION: There are two distinct nontrivial simple submodules V', W con-
tained in E. Then dimV = dim W = 2, and we may write V = (z,y), W = (z, w)



Vol. 115, 2000 LIE CENTRE-BY-METABELIAN GROUP ALGEBRAS, I 65
such that *z =y, % =zy, % =w, “w = wz. Then

l[z,a, [2,a]] =[(1+ (a,z))za, (1 + (a,2))za] = [(1 + zy)za, (1 + wz)za)
+ z2y)(1 + 2)zwae® + (1 + wz)(1 + z)2zya®

Il

(1
(zw + zwz + wyz + yz + zyz + zyw) a?

—
=

and
0 = [z,00%)a" %z = o[z,a*]a "z
=o(1+4 (z,6%) = 0(1 +y) = 2(1+ w)(1 +2)(1 +),

contradiction.

This shows that there is precisely one nontrivial simple submodule V of E.
Then E =V & Cg(a), and (a, E) = (a,V) =V has dimension 2, i.e. order 4.

(iii) Suppose that U is a subgroup of order 9 in G/C. Since G/C does not
contain elements of order 9 by (i), U is elementary abelian.

We consider E as Fy[U]-module. Again, we may write E as a sum of simple
submodules. By {2, theorem 3.2.2], none of these simple modules is faithful (in
the sense that the corresponding linear representation of U is faithful), since U
is abelian but noncyclic. At least one of the simple submodules is nontrivial, say
V. The kernel of V in U must then have order 3, so we write Cy (V) = (bC).
Take an element ¢ € G such that U = (aC,bC). Then aC acts nontrivially on
V. By (ii), aC acts trivially on all simple submodules W # V of E.

On the other hand, bC acts nontrivially on E, i.e. nontrivially on some simple
submodule W # V of E. But then abC is an element of order 3 in G/C which
acts nontrivially on both components of V & W. This contradicts (ii).

(iv) By (i), the element orders in G/C are bounded by 4. If G/C contains
no element of order 3, then exp(G/C) | 4. So suppose that G/C does contain
an element of order 3. If it also contains an element of order 2, then there also
is an element of order 6 since G/C is abelian, contradiction. Hence G/C is an
elementary abelian 3-group. Since there cannot be a subgroup of order 9 by (iii),
G/C rust have order 3. |

Remark 3.2: Let G be a group with Zox Zox Z2 2 G' ¢ Z(G). Then G’ C C :=
Co(G") < G, s0 G/C is a nontrivial abelian group. We consider G’ as an Fz-vector
space and choose a basis ,y, 2. The conjugation action of G on G’ produces a
representation G — GL(3,2) with kernel C. Below we list representatives of all
the abelian subgroup conjugacy classes of GL(3,2) (cf. [10]), and by changing
the basis if necessary, we may assume that G is mapped onto one of these:
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ee())en oS- ()2

010 011
7= (({1)) =2 ve=((i1)) =2

001 001 001 011
ve=((840) (180)) = v w=((239). (313)) = va

In any of these cases, FG is not Lie centre-by-metabelian. This is clear by 3.1 in
the case that G is mapped onto S. The other cases are handled by 3.3-3.8.

LEMMA 3.3: Let the notation be as in 3.2, and assume that GG is mapped onto R.
Then FG is not Lie centre-by-metabelian.

Proof: We assume otherwise. If we write G/C = (aC), we have %z =y, % = z,
% = x. Forall¢,d € C, we have ¢ := [z+ %, ca+ Yca)] = [z+y, (1+(d, ca))ca] =
(1+(d,ca))c[z +y,a] = (1 + (d,ca))c(z +y +y + 2)a = (1 + (d, ca))(z + 2)ca,
and

(*) 0=[a,0]la ¢ le = (14 (d,ca))(z + 2)z + (1 + %d,ca))(y + ) %cc™ 'z
= (14 (ca,d))(1 +z2) + (1 + *ca,d))(1 + zy)(a,c).

Setting ¢ = 1 and expanding parentheses, we obtain
0= (a,d) + zz + (a,d)zz + ¥a,d) + zy + a,d)zy.

If (a,d) ¢ (zy,yz) < G, then the projection of the right hand side onto F[{zy, yz)]
w.r.t. the vector space decomposition FG = € sec g is zz +zy # 0, contradic-
tion. This shows that (a,d) € (zy,yz) for all d € C, i.e. (a,C) C (zy,yz).

Since C' C Z(G) NG’ = (zyz) and (a,C)C’ = G’ ¢ (zy,yz), we have C' =
(zyz). Let ¢,d € C with (¢,d) = zyz. Then (x) yields

0= (1+zyz(a,d)(1 +z2) + (1+ zyz %a, d))(1 + zy)(a, ¢),
but the projection of the right hand side onto F[{zy, yz)] is
(1+zz) + (1 + zy)(a,c) = 1 + zz + (a,c) + zy(a, c),

which cannot vanish, for (a,c) € (zy,yz) = {1,zy,yz,zz}. |
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LEMMA 3.4: Let the notation be as in 3.2, and assume that G is mapped onto U.
Then FG is not Lie centre-by-metabelian.

Proof: We write G/C = (aC). Then % = yz, % = zyz, %2 = zy. By
the introductory remarks of this paper, we have C' C G' N Z{G) = {(zz) and
= (a,C)C". Since G’ ¢ (y,zz), also (a,C) L (y,zz).
So let ¢ € C such that (a,¢) € G' \ (y,zz). Then
[+ %, a+ @l =[z+ %, 1+ (a,¢))a] = (1 +(a,¢)) [z + %, a]
= (14 (a,¢))(z + “Ia = (1+ (a,0))(1 + z2)za =: 0,

and
[a,0]a™%z = (1 + z2) [a, (1 + (a,¢))z]a 'z

( )

= (1+22) (1 + (a,¢))za + (1 + %a,c)) *za) a~ 'z
= (1+22) (1+(a,¢) + yzz + “(a, c)y2z)

=(1+z2)(1+(a,¢) +y+ Ya,c)y).

Since (a,c), ¥a,c) ¢ {y,zz) < G, the projection of the last term onto F[(y, z2))
is (14 zz)(1 +y) # 0. Hence [FG, (FG)"] # 0. 1

LeEMMA 3.5: Let the notation be as in 3.2, and assume that G is mapped onto V.
Then FG is not Lie centre-by-metabelian.

Proof: We assume that FG is Lie centre-by-metabelian. We write G/C =
{aC,bCY with a,b € G such that % = 2, %y =y, % = z, and by = gz, by =y,
% = zy. Then Cq(a) = Cq(b) = G' N Z(G) = (y,zz), and the lower central
series of G is G > {z,y, 2} & (y,zz) > 1. Hence G has class 3.

Let g,h € G. Then

(g*h, hg) = 9'(h, hg)(g% hg) = (hg, h)(g%, k) = Mg, k) %g,}) - (g, D),
and thus
(lg, Al (g, ghl]
= [(1+ (g,h)hg, (1 + (g, gh))g°h] = [(1 + (g, k) hg, (1 + %g, h))g°R]
= (1+ (g, h)(1 + Mg, h))hg-g2h+ (1+ %g,h))(1 + ™g,h))g*h - hg
)

= (1+ Mg, 1) (1 + (g, h)) + (1 + g, h)) (g, k) (g, ) (g, 1)) hg*h
= (1+ "g,)) (1 + (g, ) (1+ %g,h))(9,h)) hg®h

= (14 Mg,h))(1 + %g,h)(g,h))hg>h

= (1+ g, )(1 + (9,9, h))hg*h.
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Now (g, hg*h) = (g, ) (g,h) = (gh, g, h) (9,9, h)(h, g, h), since y3(G) C
Z(G), and "(g,h)(1 + (9,h)) = Mg,h)(g,A)(1 + (9,h)) = (h,9,h)(1 + (g,h)).
Hence
0= [g,[g, Bl g, ghll = (1 + (9,9, h))lg, (1 + ™g, h))hg’h]

= (1+(9,9,8) (1 + Mg, h)) + (1 + 9g,h))(h, g, k) hg*hg
(*) = (1+(9,9,h)) (1 + "g,h) + (h, g, B) + (gh, g, h)(g, h)(h, g, 1)) hg’hg

= (1+(g,9,h)) (1+ Mg, k) + (g, h)(g, ) + (9,)) hg’hg

= (1+(9,9,8))(1 + "g,h))(1 + (g, h))hg’ g

= (1+(9,9,h))(1 + (h,g,h))(1 + (g, h))g*R>.

Let us assume that there exists an element ¢ € C such that (a,bc) ¢ Z(G). Then
(a,a,bc) = zz and (bc,a,bc) = zyz. If we substitute g := a and h := bc in
(%), we obtain the contradiction 0 = (1 + (a, a, bc))(1 + (bc, a,bc))(1 + (a,bc)) =
(1+22)(1 + zy2)(1 + (a,bc)) = (G' N Z(G)) Y (1 + (a,bc)) # 0.

Consequently (a,bc) € Z(G) for all ¢ € C; in particular (a,b), (a,b!) € Z(G)
since bC = b~!C. It follows that (a,c) = (a,b7'bc) = (a,b71)(a,bc) € Z(G) for
all ¢ € C, and similarly (a, ac), (a,abc) € Z(G). Since

G=CUaCUbC UabC,
we find that (a, G) C Z(G). But then
(a,97"h) = (a,g7 k) - 1-1=(a,97 ", A)(g, k! a)(h,a™,9) = 1
for all g,h € G by Witt’s identity, which shows that a acts trivially on G’,

contradiction. [ |

LEMMA 3.6: Suppose that G is a group of class at most 3 such that G' and
G/Cs(G’) both have exponent 2, and |y3(G)| < 2. If FG is Lie centre-by-
metabelian, then |{(g, k), %g,h), (g,k)}| <4 for all g,h,k € G.

Proof: Since |y3(G)| < 2, we have (1 + (f,9,h))(%,5,k) = (1 + (f,9,h)), and
thus (14(f, g, k) ¥, 5) = 1 +(f, g, h))(3,4), for all £, g, h,4,5,k € G. Using this,
an easy but lengthy calculation (similar to the ones above) shows that under the
given hypothesis, the following equation holds for all g, h,k € G (cf. [7}):

0=g, g+ *g, h+ %] = (1+ (g, )1+ %g, h))(1 + (g, k))g°h.

This, together with the remarks in the introduction of this paper, implies the
claim. |
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LEMMA 3.7: Let the notation be as in 3.2, and assume that G is mapped onto
W. Then FG is not Lie centre-by-metabelian.

Proof: Assume that FG is a counterexample.
We write G/C = (aC,bC) with a,b € G such that %z = z, %y =y, % = «,
and % = z, b = zyz, % = z. Then Ca(a) = (y,z2), C'(b) = (zy,yz), and

G' N Z(G) = (zz). The lower central series of G is G > (z,y,2) > (zz) > 1.
By 3.6,

() ({9, h), Ag,h), (g, N < 4.

forall g,h e G,ceC.
Note that the introductory remarks of this paper imply that

Gl

{(a,b)) (a,C)(b,C)C"
{(a,ab)) (a,C)(ab,C)C’
((ab, b)) (ab, C)(b, C)C""

(+%)

I

Il

We already know that C' C G' N Z(G) = (zz). We show now that also
(a,b) € (z2):

ASSUMPTION: (a,b) € {z,z}. Then 4 > |({(a,b), Ya,b), (a,c))| = |(z, 2 (a,c))|,
and 4 > |<(ba 0,), b(b’ a),(ba C)>| = |(x,z, (b7 C))l by (*) Therefore, (a) b)a (a, C)7
(byc) € {z,z) for all ¢ € C. Together with (xx), this implies G’ C (z, z), contra-

diction.
1

ASSUMPTION: (a,b) € {zy,yz}. Then we have 4 > |((a,b), %a,b),(a,c))| =
l(mya Yz, ((l, C)>!, and

4> |((ab, ), *ab,a), (ab,c))| = [(*(b, a), *b, ), (ab, )| = [{zy,yz, (b, )| .
Similarly as above, this implies G’ C (zy, yz), contradiction.

ASSUMPTION: (a,b) € {y,zyz}. In this case, 4 > |{(b,a), ¥b,a), (b,c))| =
I(y, zyz, (b,¢))], and

4> |((ab,a), ab, a), (ab, c))l = K“(b, a), %b,a), (ab, c)>| = |(y, zyz, (a,¢))|.

This produces the contradiction G’ C (y, zyz).
Hence (a,b) € (zz), as desired. We show next that (b,d) € (zz) for all d € C:
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AssumPTION: (b, d) € {z,2}. If c € C, then (d,c) € (zz), and

4> |((bd,b), *¥bd,b), (bd,c))| = |(z, 2, (b,c))|,
and therefore (b,d) € (z,z). Moreover,

4> {(ad,b), “Yad,b), (ad,c))| = |(z, 2, (a,c))|,

hence also (a,c) € {z,z). We arrive at the already familiar contradiction G' C
(x,2).

AssumpTION:  (b,d) € {zy,yz}. We have 4 > |((ad,b), “¥ad,b), (ad,d))| =
1(4d,b)(a,b), (d,b)(a,b), (a,d))| = |{zy, yz, (a,d)})|. Hence (a, d) (zy, yz).
But then Witt’s formula implies zz = (a,b,d) = (b7},d"},a)(d,a™1,b7) =
(b,d™1,a) = (b,a,d) = 1, contradiction.

AssuMpPTION: (b, d) € {y,zyz}. If ¢ € C, then
4> [{(bd,b), *4bd,b), (bd, c))| = |(y, zyz, (b, ¢))|,

and 4 > |<(abd, b), ®*4abd, b), (abd, c)>| = |(y, zyz, (ab, ¢)}|, hence (b,c), (ab,c) €
(y, zyz). This produces the contradiction G’ C {y,zyz).

This shows that (b,d) € (zz) = G’ N Z(G). Observe now that by Witt’s
formula, 1 = (b,a!,d)(a,d",b)(d,b7*,a) = (b,a™1,d). Consequently (a,C) =
(a™!,C) C Cqr(b). But then (xx) implies that G’ C Cg(b), contradiction. |

LEMMA 3.8: Let the notation be as in 3.2, and assume that G is mapped onto
T. Then FG is not Lie centre-by-metabelian.

Proof: Let G satisfy the prerequisites of the lemma. Then |G/C| = 2, ie.
G/C = {aC) for alla e G\ C.

In a first step, we claim that there is an element a € G \ C such that {¢,C) =
G

We assume otherwise and pick an arbitrary element a € G \ C. As usual,
G' = (a,C)C’ with normal subgroups (a,C) and C’ of G. Since C' C Z(G)
and G' ¢ Z(G), there is an element ¢ € C such that %a,c) # (a,c). Let
z = (a,¢), ¥y := %a,c). Then (a,C) = (z,y) for order reasons. Furthermore,
there must be elements d,e € C with z := (d,e) ¢ (z,y). Then G’ = (z,y,2),
and C' C G' N Z(G) = (zy, 2).

Now consider (da, C). Similarly as above, it must be a proper subgroup of G’
that is normal in G and nontrivially acted upon by G/C. Hence (da,C) = {z,y)
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or (da,C) = (zz,yz). Since (da,e) = (d,€e)(a,e) € (d,e)(a,C) = z (z,y), the case
(da,C) = (zz,yz) must be the correct one. Because of z = (d,e) = (ed,e), w
may replace d by ed in this argumentation, and find that also (eda, C) = (zz, yz).
But then (eda,d) = z(da,d) € (eda,C) N z(da,C) = (zz,y2z) Nz {z2,yz) = 0,
contradiction.

We want to show next that FG is not Lie centre-by-metabelian.

Again, assume otherwise and choose elements a,z,y,z € G such that G/C =
(aC), (a,C) =G = {(z,y,2),and T =y, Y=1z, 2==z

The lower central series of G is G > {z,y, 2} & {zy) > 1, so Lemma 3.6 applies
here.

Since (a,C) = G’ € Z(G), there is an element ¢ € C with |{(a, c), ¥a,c))| = 4.
On the other hand, 3.6 implies that |{(a,c), %a,c),(a,d))| < 4 for all d € C.
Together this shows that |(a,C)| < 4, in contradiction to |(a,C)| = |G'| = 8.
|

Remark 3.9: We have established Theorem 1 for all groups G with exp(G’) = 2
and |G'| < 8. Before we turn to the case where |G'| is arbitrary in 3.12, let us
study two particular situations in the following lemmata.

LEMMA 3.10: Let N be an elementary abelian normal subgroup of order 2°**
(n € Ng) of a group G such that N N Z(G) = (G,N) has order 2. Write
N = (zy,...,2n,z) with NN Z(G) = (z). Then G/Cg(N) is elementary abelian

of order 2". More exactly, there are elements ay,...,a, € G such that for all
i,j €{1,...,n},
1 ifi#],
(a5, 25) = { z ifi=j.

Proof: The action of G by conjugation on the Fy-vector space N w.r.t. the basis
T, ..., Tn,z defines a matrix representation A: G — GL(n + 1, 2) with kernel
Ce(N) and image
1 0
BCA:= - “ | CGL(n+1,2).
10
* x 1
The elementary abelian group A may be interpreted as an Fay-vector space of
dimension n with subspace B. So let us choose a basis by,...,b; of B with
k < n. It clearly suffices to show that B = A, or equivalently, k =
Again shifting our point of view, we now interpret the elements b;, i = 1,.. ., k,
as F,-linear mappings N — N, and compute dimCn(b;) = dim Ker(b; — idy) =
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dim N —rk(b; — idy) = (n+ 1) — 1 =n; i.e. Cy(b;) is a hyperplane in N. Hence
1 =dimCy(B) =dim ", Cn(b) > (n+1) =k >1. Thisshows k=n. &

LEMMA 3.11: Let G be a group that is generated by three elements, with elemen-
tary abelian commutator subgroup G’ of order 16, such that (G,G’') = G'NZ(G)
has order 2. Then FG is not Lie centre-by-metabelian.

Proof: We assume that FG is Lie centre-by-metabelian, and write G = (g, h, k)
and (G,G’) = (z). Note that G has class 3. Then G/(z) has class 2, hence
its commutator subgroup is generated by the commutators of its own genera-
tors, i.e. G'/{z) = ((g,h), (g,k), (h,k), z) /(). Since G'/(z) has order 8, also
((g,h), (g,k), (h,k)) has order 8.

If we set w := (g, h), = := (g, k), ¥ := (h, k), we obtain G’ = (w,z,y, 2).

Assume that % # w. Then %w = wz. So if "w # w, then "% = w. Choose
h € {h, hg} with hy = w. Another computation in the usual style (which we will
skip here, see [7, lemma 4.11] for details) then leads to the following contradiction:

0=1+z)[k g+ "g, h+ %) = 1+ 2)(1 + 2)(1 + w)(1 + y)ghk # 0.

Therefore (g,g,h) = (g,w) = 1. Similarly one shows that

(*) (r,r,8) =1
for all 7, s € {g, h, k}. Hence (r,s)(r~1,8) = 7 (r,s)(r"1,s) = (r~1r,8) = 1, i.e.
() (r7t,8) = (s,m) = (r,9)

for all r,s € {g, h,k}.

Since G/C(G') = (g, h,k)/Cc(G’) is elementary abelian of order 8 by 3.10,
the elements g, b, k all act nontrivially on G’. Together with (x), it follows that
(9,y) = 2, (h,z) = 2, (k,w) = 2. But then

z=2"= (9,y)(h, z)(k, w) = (9,h,k)(h, g, k)(k, g,h)
= (g’ h_l’k)(ha k—lag)(kag—-lah) =1

by (*+) and Witt’s identity, contradiction. ]

LEMMA 3.12: Let G be a group with exp(G’) = 2 and |G'| > 8. IfFG is Lie
centre-by-metabelian, then G has class 2.

Proof: Let G be a counterexample. Then FG is Lie centre-by-metabelian,
exp(G’) = 2, 13(G) # 1, and, by 3.9, |G’| > 16.
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Set C := Cg(G'). Then G/C is abelian. By 3.1, exp(G/C) | 4 or |G/C| =3. In
the latter case, 3.1 also implies that G’ = (G,G") xCa(G) = 73(G) x (Z(G)NG")
and v4(G) = (G, 73(G)) = 713(G) = (G,G") = V4. We write Z(G)NG' = (z) x N
for some z € G', N < G'. Then G/N is a non-nilpotent group with (G/N)' =
G'/N = Zy X Zy x Z3. Then by 3.9, F|G/N] is not Lie centre-by-metabelian,
contradiction. Therefore, exp(G/C) | 4.

We claim next that y3(G) is a finite 2-group. By [5], G has a subgroup A of
index at most 2, such that A’ is a finite 2-group. If G = A, then our claim follows
immediately.

So suppose G # A, and let t € G~ A. Then G’ = (t,A)A’ C A as usual.
Similarly, v3(G) = (G,G") = (A,G")(t,G’') C A'(t,G"), since (A,G’') 2 G and
(ta,h) = Ya,h)(t, k) € (A,G')(¢,G) for all a € A, h € G'. Now G’ is abelian,
and thus (t,zy) = (t,z){¢,y) for all z,y € G'. Therefore (1,G') = (t, A’ (¢, A)) =
(t, A')(t,t, A) C A'(t,t,A) = A'(t,{(t,a):a € A)) = A’ {(t,t,a): a € A), hence
v3(G) € A’ {(t,t,a): a € A). But for a € A, one has (t,t,a) = {t,a)(t,a)™" =
Ht,a)(t,a) = (t?,a) € A’. This shows v3(G) C A’. Now since A’ is finite, y3(G)
is finite, too (and of exponent 2).

Then G/Cq(v3(G)) is also a finite group; in fact, it is a finite 2-group, because
of exp (G/Cs(3(G))) | exp(G/C) | 4. Considered as F2[G/Cc(y3(G))]-module,
73(G) contains a submodule in every possible dimension. In other words: For
any ¢ € {2,4,8,...,|73(G)|}, there is a subgroup N of 3(G) of order ¢ which is
normal in G.

Assume that |G’ : v3(G)| < 4. Pick a subgroup N of y3(G) such that N 4 G
and |G’ . N| = 8. Then G/N is a counterexample to 3.9, contradiction. Hence
|G : v3(G)| > 8.

We now choose a normal subgroup N of G with N C v3(G) and |3(G) : N| = 2.
Then G/N is also a counterexample, so after replacing G by G/N, we may assume
that |y3(G)| = 2. Then v3(G) is central, and G has class 3. We write y3(G) = (2).

Clearly, there is a finite set X C G such that |(X)'| > 16 and (X) € Z(G).
By possibly adding one element of G to X which acts nontrivially on some com-
mutator of (X), we may assume that also (X) has class 3, i.e. 13((X)) = (2).
Therefore also {X) is a counterexample, and after replacing G by (X), we may
assume that G is finitely generated.

Then G/(2) is a finitely generated group of class 2, so G'/(z) is finitely gener-
ated, too. In fact, it is finite since it is elementary abelian. But then also G is
finite.

From now on, we may argue by induction on |G’|. We write |G’| = 2"*! with
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n > 3, and assume that the lemma is already proved for every applicable group
H with |H'| < 2™,

If s € (G' N Z(G)) \ {1}, then, by induction, G/(s) has class 2. Therefore
(z) = 13(G) C (s), hence s = z and G' N Z(G) = (z) = 73(G).

We write G' = (z1,...,2Zp,2) with z1,...,z, € G’ ~ Z(G). By 3.10, there are
elements a1,...,a, € G such that

(ai,xj)={1 lfz#]. foralli,7=1,...,n,

z ifi=j
and G/C = (a1C,...,a,C) is an elementary abelian group of order 2". Hence
Hy = {ay,a3,...,0,,C) and Hy := {(a;,43,...,a,,C) are normal subgroups of

G of index 2 with G = HyH,.

In the case H; = G’, we have Z(H,) N H{ = Ce(H1) = Cg(ag,-.-,an) =
(2,21) and (z) 2 (Hy,Hy) = (H1,G') 2 (a2,G’) = (z). Hence H; is a group of
class 3, and therefore also a counterexample. Then H;/(x1), which also has class
3, is also a counterexample whose commutator subgroup is elementary abelian of
order 2™. But this contradicts the induction hypotheses.

Therefore H; < G'. Then induction implies that |[H;| < 4 or cl(H;) = 2.

If H; has class 2, then H] C Cq/(Hy) = (21, 2). Therefore, we have |H{| < 4
in any case. Moreover, since G’ C C C H, we know that (z) = (H;,G’) C Hj,
and therefore |H1/(z)| < 2. Similarly, |Hj/(2)| < 2.

Since G/(z) has class 2 and is generated by C U {as,...,a,}, we have

G'/(z) = ((a1,02)) H1 Hp/(z)

It follows that |G’ : ()| < |{(a1,a2), 2) : (2)| - |H} : (2)| - |Hy : (2)] < 2-2-2=8,
and thus 16 < |G'| =2|G": ()} £ 186.

Consequently n = 3, G' = (z1,z2,23,2), and G/C = (a1C,a2C,a3C). Then
(a1,a2) must not be contained in {(a1,a3), (az,a3)) € H{Hj, for otherwise
|G’] < 16. Similarly one shows that (a1,a3) ¢ ((a1,a2), (a2,a3)) and (a2, a3) ¢
|{(a1,a2), (a1,03))|. Hence |{(a1,a3), (a1,a3), (az,a3))| = 8, i.e. |{a1,a2,a3)' | >
8. Then (a1,az2,a3) acts nontrivially on (a;,az,a3)’, hence cl({a1,az,a3)) > 2.
By 3.9, | {a1,az,a3)’ | > 16, and thus (a1,az,a3)’ = G’. But then (a;,az,a3) is a
counterexample to 3.11, contradiction. |
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